DEPARTMENT OF CIVIL ENGINEERING

CURRICULUM & SYLLABUS

(Based on Outcome Based Education)

For

B.Tech – CIVIL ENGINEERING

(Part Time –3 1/2Years)

REGULATION 2021

PERIYAR MANIAMMAI INSTITUTE OF SCIENCE AND TECHNOLOGY

Vision		University of global dynamism with excellence in knowledge and innovation social responsibility for creating an egalitarian society.
	UM1	Offering well balanced programmes with scholarly faculty and state-of-art facilities to impart high level of knowledge.
Mission	UM2	Providing student - centered education and foster their growth in critical thinking, creativity, entrepreneurship, problem solving and collaborative work.
IVIISSIOII	UM3	Involving progressive and meaningful research with concern for sustainable development.
	UM4	Enabling the students to acquire the skills for global competencies.
	UM5	Inculcating Universal values, Self respect, Gender equality, Dignity and Ethics.

Core Values

- Student centric vocation
- Academic excellence
- Social Justice, equity, equality, diversity, empowerment, sustainability
- Skills and use of technology for global competency.
- Continual improvement
- Leadership qualities.
- Societal needs
- Learning, a life long process
- Team work
- Entrepreneurship for men and women
- Rural development
- Basic, Societal, and applied research on Energy, Environment, and Empowerment.

DEPARTMENT OF CIVIL ENGINEERING

		To create technocrats in the discipline of Civil Engineering through research
Vision		integrated academic programme of UG, PG and Ph.D. of global standards and in turn
		contribute to the socio-economic development of the nation through research and
		consultancy.
	DM1	To create, disseminate and integrate knowledge of science , engineering and
		technology through innovative teaching learning process that expands Civil
		Engineering Knowledge base and enhance the betterment of industry and human
		society
	DM2	To develop , perform forward looking research by integrating proper blend of
		applied and theoretical knowledge with a positive impact for the society
Mission		
	DM3	To educate , inspire and create competent civil engineering professionals who
		possess the knowledge and skills required by industries for careers or to become an
		entrepreneur
	DM4	To serve as a reliable , highly capable resource for society , the profession and the
		university through activities in the professional organization , committees ,
		consultancy and continuing education

Table: 1 Mapping of University Mission (UM) and Department Mission (DM)

	UM 1	UM 2	UM 3	UM 4	UM 5
DM 1	2	3	2	1	3
DM 2	1	2	2	1	2
DM 3	2	3	3	2	2
DM 4	3	2	2	2	3
	8	10	9	6	10

1-Low 2- Medium 3 – High

PROGRAMME EDUCATIONAL OBJECTIVES

Based on the mission of the department, the programme educational objectives is formulated as

PEO1	Graduates will successfully apply the engineering concepts to the formulation and provide solution to the emerging technical problems in industry, government or other organizations towards implementing efficient civil engineering practices.
PEO2	Graduates will have the ability to use their education to be lifelong learners and in turn utilize intellectual curiosity in enhancing technical, personal and professional growth.
PEO3	Graduates will become entrepreneurs (professional engineers) in starting-up and growing their own new firms in the domain of civil engineering and also exhibit leadership role of highest standards of professional endeavors in their chosen profession and in other activities.
PEO4	Graduates will be aware of ethical, social and cultural issues within a global context and their importance in the exercise of professional skills and responsibilities.

Table: 2Mapping of Program Educational Objectives (PEOs) with
Department Mission (DM)

	DM 1	DM 2	DM3	DM 4
PEO 1	3	2	1	1
PEO 2	2	3	2	1
PEO 3	1	1	3	2
PEO 4	2	1	1	3
	8	7	7	7

1- Low 2 – Medium 3-High

GRADUATE ATTRIBUTES

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization for the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modeling to complex engineering activities, with an understanding of the limitations.
- 6. **The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. **Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication:** Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM OUTCOMES

- **PO 1** Apply the knowledge of mathematics, science, Engineering fundamentals and Civil Engineering principles to the solution of complex problems in Civil Engineering.
- **PO 2** Identify, formulate, research literature and analysis complex civil engineering problems reaching substantiated conclusions using first principles of mathematics and Engineering Sciences.
- **PO 3** Design solutions for complex civil engineering problems and design system components or processes that meet the specified needs with appropriate considerations for the public health and safety and the cultural, societal and environmental conservations
- **PO 4** An ability to plan, draw and design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- **PO 5** An ability to work effectively as an individual and a team.
- **PO 6** An ability to identify, formulate, and solve engineering problems.
- PO 7 An understanding of professional and ethical responsibility in a global context
- **PO 8** An ability to articulate and communicate ideas persuasively and effectively both in written and oral.
- **PO 9** A recognition of the need for, and an ability to engage in lifelong learning
- PO 10 A knowledge of contemporary issues relevant to engineering practice
- **PO 11** An ability to understand the critical issues of professional practice such as the procurement of work, financial management and the interaction with contractors during the construction phase of a project.
- **PO 12** An ability to use the techniques, skills, and modern engineering tools necessary for Engineering practice

PROGRAM SPECIFIC OUTCOME

- **PSO 1** Capably plan, analyse and design the civil engineering structures.
- **PSO 2** Apply knowledge of three technical areas appropriate to Civil Engineering such as Geotechnical, Environmental and water resources engineering etc.

	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PS01	PSO 2
PEO 1	3	2	2	1	1	2	-	-	-	1	2	-	3	-
PEO 2	1	3	2	3	2	1	1	-	-	2	1	1	-	2
PEO 3	-	1	3	2	3	-	2	1	1	2	1	2	1	1
PEO 4	-	1	2	2	-	1	3	1	1	1	1	1	-	1
	4	7	9	8	6	4	6	2	2	6	5	4	4	4

Table 3 Mapping of Program Educational Objectives (PEOs)with Program Outcomes (POs)

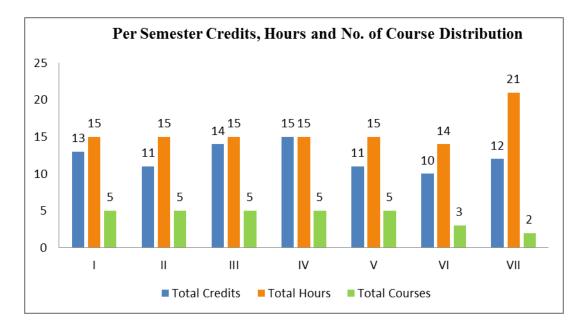
1 - Low 2 – Medium

3 - High

CURRICULUM REGULATION – 2021

(Applicable to the students admitted from the Academic year 2021–2022 onwards)

Bachelor of Technology in Civil Engineering (Part Time)


S.No	Description		Courses		Cr	edits	5		H	ours	
				L	Т	Р	ТО	L	Т	Р	ТО
			SEMESTER I					•			
1.	MA-I	PCE101	Probability and statistics	3	0	0	3	3	0	0	3
2.	PCC T	PCE102	Mechanics of Solids-I	2	1	0	3	2	2	0	4
3.	PCC-T	PCE103	Fluid Mechanics and Machinery	2	1	0	3	2	2	0	4
4.	PCC-L	PCE104	Strength of Materials Lab	0	0	2	2	0	0	2	2
5.	PCC-L	PCE105	Fluid Mechanics and Machinery Lab		0	2	2	0	0	2	2
			Total				13				15
			SEMESTER II					•			
1.	PCC T	PCE201	Mechanics of Solids-II	2	1	0	3	2	2	0	4
2.	PCC-T	PCE202	Geotechnical Engineering - I	2	1	0	3	2	2	0	4
3.	PCC-T	PCE203	Concrete Technology	3	0	0	3	3	0	0	3
4.	UMAN-I	P**204	Disaster Management	0	0	0	0	2	0	0	2
5.	PCC-L	PCE205	Geotechnical Engineering Lab	0	0	2	2	0	0	2	2
			Total				11				15
			Semester III								
1.	PCC T	PCE301	Structural Analysis	3	1	0	4	3	2	0	5
2.	PCC-T	PCE302	Transportation Engineering	3	0	0	3	3	0	0	3
3.	PCC-T	PCE303	Environmental Engineering	3	0	0	3	3	0	0	3
4.	PCC-L	PCE304	Environmental Engineering Lab	0	0	2	2	0	0	2	2
5.	PCC-L	PCE305	Concrete & Highway Lab	0	0	2	2	0	0	2	2
			Total				14				15

S.No	Description		Courses		Cre	edits	5		Н	ours	
				L	Т	Р	то	L	Т	Р	ТО
			Semester IV			•					
1.	PCC -T	PCE401	Design of RCC Structures	3	1	0	4	3	1	0	4
2.	PCC-T	PCE402	Geotechnical Engineering - II	2	1	0	3	2	1	0	3
3.	PCC-T	PCE403	Construction Engineering and Management	3	0	0	3	3	0	0	3
4.	PEC-I	PCEE**	Professional Elective -I	3	0	0	3	3	0	0	3
5.	PCC-L	PCE405	Construction Management Lab	0	0	2	2	0	0	2	2
			Total				15				15
			SEMESTER V								
1.	PCC- T	PCE501	Design of Steel Structures	3	1	0	4	3	2	0	5
2.	PEC-II	PCEE**	Professional Elective II	3	0	0	3	3	0	0	3
3.	UMAN-V	MC	Environmental studies	0	0	0	0	2	0	0	2
4.	PCC-L	PCE504	Computer Aided Design & Drafting	0	0	2	2	0	0	3	3
5.	PCC-L	PCE505	Estimation, Costing and valuation	0	0	2	2	0	0	2	2
			Total				11				15
		•	SEMESTER VI		<u> </u>					<u> </u>	
1.	PCC-T	PCE601	Finite Element Method	3	1	0	4	3	2	0	5
2.	PEC-III	PCEE**	Professional Elective –III	3	0	0	3	3	0	0	3
2.	PROJ II	PCE603	Project Work (Phase-I)	0	0	3	3	0	0	6	6
			Total				10				14
			SEMESTER VII								
1.	PEC-IV	PCEE**	Professional Elective –IV	3	0	0	3	3	0	0	3
2.	PROJ II	PCE702	Project Work (Phase-II)	0	0	9	9	0	0	18	18
			Total				12				21
			Total Credit - 86								

Semester	Credits	Hours / Week	Number of courses
Ι	13	15	5
11	11	15	5
III	14	15	5
IV	15	15	5
V	11	15	5
VI	10	14	3
VII	12	21	2
I – VII	86	110	30

Year	Semester	Total Credits	Total Hours / Week	No. of courses	Value Addition Suggested
I	Ι	13	15	5	No
I	II	11	15	5	No
II	III	14	15	5	No
11	IV	15	15	5	No
III	V	11	15	5	No
111	VI	10	14	3	No
IV	VII	12	21	2	No
	I – VII	86	110	30	

Summary of the credits and hours

PROFESSIONAL ELECTIVE COURSE - CIVIL ENGINEERING [PEC-CE]

Sub. Code	Category	Name of the Course	Hour	С		
Sub. Code	Category	Name of the Course	L	Т	Р	C
PCEE01	PEC	Smart Structures and Materials	3	0	0	3
PCEE02	PEC	GIS for Civil Engineering	3	0	0	3
PCEE03	PEC	Water Quality Engineering	3	0	0	3
PCEE04	PEC	Pavement Design	3	0	0	3
PCEE05	PEC	Construction Equipment and Automation	3	0	0	3
PCEE06	PEC	Airport Planning and Design	3	0	0	3
PCEE07	PEC	Port and Harbour Engineering	3	0	0	3

Professional Elective Course I

Professional Elective Course II

Sub. Code	Catagomy	Name of the Course	Hour	C		
Sub. Code	Category	Name of the Course	L	Т	Р	C
PCEE08	PEC	Earthquake Engineering	3	0	0	3
PCEE09	PEC	Bridge Engineering	3	0	0	3
PCEE10	PEC	Advanced Structural Analysis	3	0	0	3
PCEE11	PEC	Basics of Computational Hydraulics	3	0	0	3
PCEE12	PEC	Water Resources Engineering	3	0	0	3
PCEE13	PEC	Environmental Geotechnology	3	0	0	3
PCEE14	PEC	Geotechnical Design	3	0	0	3

Professional Elective Course III

Sub. Code	Category	Name of the Course	Hour	eek	С	
Sub. Code	Category	Name of the Course	L	Т	Р	C
PCEE15	PEC	Environmental Fluid Mechanics	3	0	0	3
PCEE16	PEC	Environmental Impact Assessment	3	0	0	3
PCEE17	PEC	Design of Hydraulic Structures	3	0	0	3
PCEE18	PEC	Surface Hydrology	3	0	0	3
PCEE19	PEC	Repairs and Rehabilitation of Structures	3	0	0	3
PCEE20	PEC	Urban Hydrology and Hydraulics	3	0	0	3
PCEE21	PEC	Building Construction Practice	3	0	0	3

Professional Elective Course IV

Sub.Code	Catagony	Name of the Course	Hour	Hours per week					
Sub.Coue	Category	Name of the Course	L	Т	Р	С			
PCEE22	PEC	Tall Structures							
PCEE23	PEC	Environmental Law and Policy	3	0	0	3			
PCEE24	PEC	Groundwater Engineering	3	0	0	3			
PCEE25	PEC	Solid and Hazardous Waste Management	3	0	0	3			
PCEE26	PEC	Pre-stressed and Prefabricated Structures	3	0	0	3			
PCEE27	PEC	Contracts Management	3	0	0	3			
PCEE28	PEC	Air and Noise Pollution and Control	3	0	0	3			

Note

L-Lecture, T-Tutorial, P-Practical, C-Credit

Sen	neste	er	:	: I												
Cou	ırse	Code	:	: P	CE102											
Сог	ırse	Name	e :	: N	IECHANICS	OF SOL	IDS-I									
Pre	requ	isite	:	: E	NGINEERIN	G MEC	HANIC	S								
	L	Т	Р	С		С	Р	A			L	Т	Р	H	1	
	2	1	0	3	-	2.5	0	0.5	-		2	2	0	4	-	
Course Outcome: After the completion of the course, students will be able toDomain C or P or ALe CCO1Analyse stresses and strains in members when subjected to loads.CognitiveAnalyse									e vel yse							
CO	2	Evalu	ate th	e stra	in energy unde	r various	s forces			Co	ogniti	ve		Analyse		
CO		Calculate the shear force and bending moment due to variou loading conditions.								as Cognitive A					yse	
CO					ability of struc ernal forces.	tural me	embers	by stud	ying the	Co	ogniti	ve		Analyse		
CO	5	Asses	s the	outpu	t of shafts and	springs f	for its m	aximum	energy.	Co	ogniti	ve		Knov	wledge	

COURSE CONTENT

UNIT I SIMPLE STRESSES & STRAINS

Concept and types of Stress and Strain, Hooke's Law, Elastic moduli and the relationship between them, Thermal stress, deformation of simple and compound bars.

UNIT II STRAIN ENERGY

Strain energy and strain energy density – strain energy in traction, shear in flexure and torsion – Strain Energy due to axial force - Resilience - stresses due to impact and suddenly applied load - Principal stress and principal planes - Mohr's circle

UNIT III TRANSVERSE LOADING AND STRESSES OF BEAMS

Beams – types of supports and loads – shear force and bending moment for simply supported, cantilever and over hanging beams. Theory of simple bending – analysis of stresses.

UNIT IV ANALYSIS OF PLANE TRUSS, THIN CYLINDERS / SHELLS

Types of truss – analysis of forces in truss members -method of joints- method of sections. -Thin cylinders and shells – under internal pressure – deformation of thin cylinders and shells

UNIT V TORSION AND SPRINGS

Stresses and deformation in solid and hollow circular shaft– stepped shafts – shafts fixed at both ends. Spring – leaf springs – stresses in helical springs – deflection of springs.

L	Т	Р	Total
30	15	0	45

9

9

9

9

TEXT BOOKS

1.Dr. R.K.Bansal," Strength of Materials", Laxmi Publications Pvt Ltd, New Delhi, 8th Edition

- 2. R.K. Rajput, "Strength of Materials", S.Chand and Company Ltd, New Delhi, 8th Edition
- 3. R.S. Khurmi, "Strength of Materials", S. Chand & Company Ltd, New Delhi, 2013.

REFERENCE BOOKS

- 1. William Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, McGraw-Hill International Edition.
- 2. Strength of Materials by R. Subramanian, Oxford University Press, New Delhi
- 3. Egor P Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 2012, Second Edition.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	3		1	3						2		2	
CO 2	1	3				2					2		2	
CO 3	1	2	2	1			1	1			2		1	
CO 4	1	2	2	1			1	1			2		1	
CO 5	1	2												
Total	6	12	4	3	3	2	2	2			8		6	
Scaled Value	2	3	1	1	1	1	1	1			2		2	

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15	
	Scaled value	0	1	2	3	
	Relation	No	Low	Medium	High	

COURSE CONTENT

UNIT I	PROPERTIES OF FLUID AND FLUID STATICS	9
	Basic Concepts and Definitions - Distinction between a fluid and a s	solid;
	Density, Specific weight, Specific gravity, Kinematic and dynamic viscosity; variation	on of
	Density, Specific weight, Specific gravity, Kinematic and dynamic viscosity; variatio	on.

viscosity with temperature, Newton's law of viscosity; vapour pressure, boiling point, cavitation; surface tension, capillarity, Bulk modulus of elasticity, compressibility.

Fluid Statics - Fluid Pressure: Pressure at a point, Pascal's law, Hydrostatic Law, Pressure measuring devices-manometers and its types- Pressure gauges and its types

UNIT II FLUID KINEMATICS AND DYNAMICS

Classification of fluid flow - Types of Flow lines-stream function, velocity potential function, flow net- Continuity equation along stream lines and Cartesian coordinates. Equations of motion - Euler's equation; Bernoulli's equation - Derivation; Energy Principle; PRACTICAL applications of Bernoulli's equation: Venturimeter, orifice meter and Pitot tube; Momentum principle

Course Objectives

1

- To understand about properties of fluids
- To Analyse the flow of fluid under various conditions
- To understand about various hydraulic Machines

Course (be able t	<i>Outcome: After the completion of the course, students will o</i>	Domain C or P or A	Level
CO1	Understand the basic terms used in fluid mechanics, under static condition	Cognitive	Understand and Apply
CO2	Apply the principles of fluids under kinematics and dynamic conditions	Cognitive	Apply and Analyse
CO3	Perform the dimensional analysis for problems in fluid mechanics	Cognitive Affective	Analyse
CO4	Apply and analyze distribution of water through pipe and pipes	Cognitive	Apply and Analyse
CO5	Understand the components, the hydro-machines	Cognitive Affective	Understand

Т Р С L

3

NIL

С	Р	Α
2.5	0	0.5

FLUID MECHANICS AND MACHINERY

L	Т	Р	Η
2	2	0	4

9

14

Ι :

:

:

0

Course Code PCE 103 :

Semester

Course Name

Prerequisite

UNIT III FLOW THROUGH PIPES AND OPEN CHANNEL FLOW

Laminar flow through: circular pipes,-Hegen Poisullis Equation a Laminar flow through parallel plates. Loss of head through pipes, Darcy-Wisbech equation, minor losses, total energy equation- hydraulic gradient line- Pipes in series, equivalent pipes- pipes in parallel, power transmission through pipes., Syphon and Water hammer.

Comparison between open channel flow and pipe flow, geometrical parameters of a channel, classification of open channels, classification of open channel flow, Velocity Distribution of channel section

UNIT IV DIMENSIONAL ANALYSIS AND HYDRAULIC SIMILITUDE

Dimensional homogeneity, Rayleigh method, Buckingham's Pi method and other methods. Dimensionless groups. Similitude, Model studies, Types of models. Application of dimensional analysis and model studies to fluid flow problem.

UNIT V HYDRAULIC MACHINES

Turbines – classification –Pelton wheel –Francis and Kaplan turbines –draft tubes – performance of turbines – specific speed and their significance.

Pumps:-Centrifugal pump – description and working – head, discharge and efficiency of a Centrifugal pump. Reciprocating pump - description and working – types –working principle and use.

L	Т	Р	Total	
30	15	0	45	

TEXT BOOKS

- 1. R.K.Rajput, Fluid Mechanics and Hydraulic Machines, S.Chand& Company Ltd., New Delhi, 2002.
- 2. Bansal, R. K., Fluid Mechanics and Hydraulic Machines, Laxmi Publications (P) Ltd., New Delhi, 2011.
- 3. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by P. N. Modi& S. M. Sethi Standard Publishers, New Delhi.
- 4. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by K. R. Arora, Standard Publishers, New Delhi

REFERENCE BOOKS

- 1. Theory and Applications of Fluid Mechanics, K. Subramanya, Tata McGraw Hill.
- 2. Introduction to fluid mechanics, Robert W. Fox, Philip J. Pritchard & Alan T. Mcdonald, Wiley Student Edition, 2009.
- 3. Fluid Mechanics and Machinery, C. S. P. Ojha, R. Bengtsson and P. N. Chadramouli0, Oxford University Press, 2010.
- 4. Fluid Mechanics with Engineering Applications, R.L. Daugherty, J.B. Franzini and E.J.Fennimore, International Student Edition, McGraw Hill.

9

9

Mapping of	Mapping of CO with PO's													
	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	1	0	0	0	1	0	1	1	1	0	0	0	1
CO 2	3	2	2	1	1	2	0	1	1	1	0	0	2	1
CO 3	3	2	2	1	1	2	1	1	2	2	0	1	2	1
CO 4	3	3	3	2	1	2	1	1	2	2	0	1	2	1
CO 5	2	1	0	0	1	0	1	2	2	1	0	1	0	1
Total	13	9	7	4	4	7	3	6	6	7	0	3	6	5
Scaled Value	3	2	1	1	1	1	1	1	1	1	0	1	1	1

Note:

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Сог		r Code Name			CE 104 TRENGTH O	F MAT	ERIAL	S LAB							
Pre	requ														
	L	Т	Р	C		C	Р	Α		L	Т	Р	Н		
	0	0	2	2	-	0	3	0	-	0	0	2	2		
Сои	irse (Dutco	me: A	After t	he completion	of the co	ourse, stu	idents w	ill be able to	Do	main		Level		
										C or	P or A				
CO	1 I	Perce	erception about the behavior of solids under stress and strain. Psychomotor Respond												
CO	2 (Calcu	late tl	he for	ces and momen	nts.				Psycho	motor		Measure		

Psychomotor

Psychomotor

Psychomotor

Measure

Measure

Respond

CO3 Predict the properties of surfaces of solids.

CO4 Behaviour of beams under different loading systems.

CO5 Calculate the deflection of springs.

COURSE CONTENT

1.Tension test on HYSD bar / MS rod

- 2. Impact Test (Izod and Charpy)
- 3. Hardness Test (Brinell and Rockwell)
- 4. Test on timber
 - i) Compressive strength test
 - ii)Tensile strength test
 - iii)Shear Strength test
 - iv) Static bending test
- 5. Deflection Test
- 6. Young's modulus of the given material (steel or wood)
- 7. Tests on springs.

L	Т	Р	Total	
0	0	30	30	

- 1. Egor P Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 2012, Second Edition.
- 2. Srinath L.S, "Advanced Mechanics of Solids", Tata McGraw-Hill Publishing Co., New Delhi, 2009, Third Edition.
- 3. William Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, McGraw-Hill International Edition, 2011.

REFERENCE BOOKS

- 1. Timoshenko, S. and Young, D. H., "Elements of Strength of Materials", DVNC, New York, USA.
- 2. Kazmi, S. M. A., "Solid Mechanics" TMH, Delhi, India.
- 3. Hibbeler, R. C. Mechanics of Materials. 6th ed. East Rutherford, Pearson Prentice Hall, 2004

	PO1	P02	P03	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	PSO 1	PSO2
CO1	2	3		1	3						2		2	
CO2	1	3				2					2		2	
CO3	1	2	2	1			1	1			2		1	
CO4	1	2	2	1			1	1			2		1	
CO5	1	2												
Total	6	12	4	3	3	2	2	2			8		6	
Scaled Value	2	3	1	1	1	1	1	1			2		2	

Mapping of CO with PO's

1 - Low, 2 - Medium, 3 - High

Semester	:	I									
Course Code	:	PCE 105									
Course Name	:	FLUID MECH	ANICS A	AND M	ACHIN	ERY LAB					
Prerequisite	:	NIL									
LT	P	С	С	Р	Α		L	Т	Р	Н	

3

0

Course Objectives

0

2

2

0

• Upon Completion of this subject, the students can able to have hands on experience in flow measurements using different devices and also perform calculation related to losses in pipes and also perform characteristic study of pumps, turbines etc.,

0

0

0

2

2

Course Outcome:	Domain C or P or A	Level
Determine the coefficient of discharge through pipe and notch	Psychomotor	Respond
Verify the principle of Bernoullis Equation.	Psychomotor	Measure
Determine the minor losses for various fittings.	Psychomotor	Measure
Perform test on Efficiency of the Pumps	Psychomotor	Measure
Perform test on Efficiency of the Turbines	Psychomotor	Respond

LIST OF EXPERIMENTS

- 1. Determination of the Coefficient of discharge of given Orifice meter.
- 2. Determination of the Coefficient of discharge of given Venturi meter.
- 3. Verification of Bernoullis Equation.
- 4. Determination of friction factor for a given set of pipes.
- 5. Determination of minor losses for various fitting.
- 6. Determination of rate of flow through notches
- 7. Conducting performance test on centrifugal pump and draw their characteristic curves
- 8. Conducting performance test on Reciprocating pump and draw their characteristic curves
- 9. Conducting performance test submersible pump and draw their characteristic curves
- 10. Conducting load test on Pelton Turbine and draw their characteristic curves
- 11. Conducting load test on Francis Turbine and draw their characteristic curves
- 12. Study about Axial flow turbine- Kaplan turbine.

L	Т	Р	Total	
0	0	15	15	

EXT BOOKS

- 1. R.K.Rajput, Fluid Mechanics and Hydraulic Machines, S.Chand& Company Ltd., New Delhi, 2002.
- 2. Bansal, R. K., Fluid Mechanics and Hydraulic Machines, Laxmi Publications (P) Ltd., New Delhi, 2011.
- 3. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by P. N. Modi& S. M. Sethi Standard Publishers, New Delhi,
- 4. Hydraulics, Fluid Mechanics and Hydraulics Mechanics by K. R. Arora, Standard Publishers, New Delhi

REFERENCE BOOKS

- 1. Theory and Applications of Fluid Mechanics, K. Subramanya, Tata McGraw Hill.
- 2. Introduction to fluid mechanics, Robert W. Fox, Philip J. Pritchard & Alan T. Mcdonald, Wiley Student Edition, 2009.
- 3. Fluid Mechanics and Machinery, C. S. P. Ojha, R. Bengtsson and P. N. Chadramouli0, Oxford University Press, 2010.
- 4. Fluid Mechanics with Engineering Applications, R.L. Daugherty, J.B. Franzini and E.J.Fennimore, International Student Edition, McGraw Hill.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2		2	2	1				1		1	1	1	
CO 2	1		1	1	1				1		1	1		
CO 3	1			1					1				1	
CO 4	1		1						1					
CO 5	2			1	1						1		1	1
Total	7		4	5	3				4		3	2	3	1
Scaled Value	2		1	1	1				1		1	1	1	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sem	ieste	er	:	: II	[
		Code		: Р	CE 201										
		Name			IECHANICS	OF SOL	JDS-II								
		iisite			IECHANICS										
TTe		1		1					1	Г	T	T	D	TT	1
	L	Т	Р	C		С	Р	A			L	Т	Р	H	
	2	1	0	3		2.5	0	0.5			2	2	0	4	
Cou to	rse	Outco	me: A	fter t	he completion	of the co	ill be able	_	Dom or P	ain or A		Level	1		
CO	1	Deteri	mine	the de	eflection of Si	·s	Cog	gnitiv	ve	Ana	lyse				
CO	2	Analy	se ii	ndetei	rminate struc	tures for	r shear	force	and		gnitiv		Analyzing &		
		bendiı	ng mo	oment	•					Aff	fectiv	ve	Respond		
CO		Discu end co			re criteria of	the colur	nn and	cylinder	based on		gnitiv fectiv		Und &	lerstand	liı
												-		pond	
CO	4	Comp	uta tk	na daf	laction of bas	me hv ond	ray prir	ainlas		Co	aniti	108			2
υ	4	Comp	ute tr		lection of bea	ins by ene			gnitiv fectiv			lication	1 (
									Receive						
CO		Analy frame		e de	grees of free	ematic	Cognitive Analyse								

COURSE CONTENT

UNIT I **DEFLECTIONS OF BEAMS** 9 Introduction, Equation of Elastic Curve, Methods for Determining Deflections (Double Integration, Macaulay's Method, Moment-Area Method). Strain energy and dummy unit load approaches to deflection of Simple and Curved members. UNIT II **INDETERMINATE BEAMS** 9 Propped cantilever and fixed beams-fixed end moments and reactions- Theorem of Three Moments - Shear force and Bending moment diagrams for continuous beams. **UNIT III COLUMNS AND THICK CYLINDERS** 9 Introduction - Short and Long Columns, Euler's Theory, Rankine-Gordon Formula, Eccentrically Loaded Columns - Thick cylinders - compound cylinders. UNIT IV **ENERGY PRINCIPLES** 9

Castigliano's theorems – principle of virtual work – Maxwell's reciprocal theorems.application of energy theorems for computing deflections in beams and trusses.

UNIT V INDETERMINATE BEAMS AND FRAMES

Degree of static and kinematic indeterminacies for beams and plane frames - analysis of indeterminate pin-jointed frames - rigid frames.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

1 .Dr. R.K.Bansal," Strength of Materials", Laxmi Publications Pvt Ltd, New Delhi, 8th Edition

- 2. R.K. Rajput, "Strength of Materials", S.Chand and Company Ltd, New Delhi, 8th Edition
- 3. R.S. Khurmi, "Strength of Materials", S. Chand & Company Ltd, New Delhi, 2013

REFERENCE BOOKS

1. William Nash, Theory and Problems of Strength of Materials, Schaum's Outline Series, McGraw-Hill International Edition.

- 4. Strength of Materials by R. Subramanian, Oxford University Press, New Delhi
- 5. Egor P Popov, "Engineering Mechanics of Solids", Prentice Hall of India, New Delhi, 2012, Second Edition.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1					1			1					
CO 2	2	1				1		1			1		3	
CO 3	1				1		1				1			
CO 4	3	1		3			1						1	
CO 5	3	3											1	
Total	10	5	0	3	1	2	2	1	1	0	2	0	5	0
Scaled Value	2	1	0	1	1	1	1	1	1		1		1	

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	r	:	: Il	[
Co	urse	Code	:	P	CE 202									
Co	urse l	Name	e :	G	EOTECHNIC	CAL EN	GINEE	RING -	·I					
Pre	erequ	isite	:	: N	IL									
	L	Т	Р	С		С	Р	Α		L	Т	Р	Н	
	2	1	0	3		2	0.5	0.5		2	2	0	4	

Course Objectives

- To understand the soil properties, composition and structure
- To Familiarize the students an understanding of permeability and seepage of soils
- To learn the stress-strain relationship
- To know about the strength of soil and its analysis

	e Outcome: After the completion of the course, students	Domain	Level
will be	able to	C or P or A	
CO1	Identify and analyze various types of soils for	Cognitive &	Remembering &
	engineering utilization.	Psychomotor	Observation
CO2	Determine the necessary index and engineering	Cognitive	Analyzing
	properties of soils.	Affective	Respond to
		Psychomotor	Phenomena
			Observation
CO3	Predicts the stress distribution pattern of soil	Cognitive,	Application
		Affective & Psychomotor	Respond to Phenomena
			Manipulation
CO4	Illustrate the failure modes of Soil	Cognitive &	Understanding
		Psychomotor	Manipulation
CO5	Investigate the soil using appropriate methods and	Cognitive &	Remembering
	equipments.	Psychomotor	Observation

COURSE CONTENT

UNIT I SOIL PROPERTIES AND SUB SOIL INVESTIGATION

Origin of Soils and Rocks; Rock cycle; Soil minarology; Index properties including consistency limits and grain size distribution – Identification and classification of soil – Textural HRB and BIS specification

Methods of exploration, geophysical and conventional methods; Sounding drilling and boring technique; Field tests – penetration tests

UNIT II SOIL - WATER STATICS

Concept effective and neutral stresses - Darcy's law, Permeability - Field and Laboratory

9

permeability tests –Seepage flow, seepage pressure, exit gradient - Flownet – significance of Laplace equation – quick sand condition, Liquefaction

UNIT III COMPRESSIBILITY AND CONSOLIDATION OF SOIL

Compaction – Factors affecting compaction – proctor test – Field compaction – Field compaction controls, CBR value and CBR test

Consolidation of soils – Terzaghi's one dimensional consolidation theory – pressure void ratio relationship – prediction of pre consolidation pressure – Total settlement and time rate settlement – secondary compression – coefficient of consolidation – Curve fitting methods, consolidation models.

UNIT IV STRESSES IN SOIL FROM SURFACE LOADS

Vertical stress distribution in soil - Boussinesq's and Westerguard's equations – Newmark's influence chart – Principle, Construction and use - Equivalent point load and other approximate procedures, stress isobars & pressure bulbs

UNIT V SHEAR STRENGTH OF SOIL

Shear Strength; Mohr – Coulomb failure criterion and models – laboratory and field tests – shear properties of cohesion less and cohesive soils - Shear Strength. Parameters for under consolidated, normally consolidated and over consolidated clays; Soil sensors applied in field, Modern advancements; Trenchless Technology

L	Т	Р	Total	
45	0	0	45	

TEXT BOOKS

- 1. Murthy, V. N. S. "Geotechnical Engineering: Principles and Practices ofSoil Mechanics and Foundation Engineering", CRC Press, 2002
- 2. Ranjan, Gopal & Rao, A.S.R., "Basic and Applied Soil Mechanics", New Age Int. Pvt. Ltd., 2004.
- 3. Venkatramaiah, C. "Geotechnical Engineering", New Age International Publishers, New Delhi, 3rd edition, 2005, Reprint 2011.
- 4. Punmia. B.C., Asok Kumar Jain and Arun Kumar Jain, "Soil Mechanics and Foundations" Laxmi Publications Pvt. Ltd., New Delhi, Sixteenth edi.tion, 2005

REFERENCE BOOKS

- 1. Terzaghi, K., Peck, R. B. & Mesri, G., "Soil Mechanics in Engineering Practice", Wiley, 1996.
- 2. Craig, R.F. "Craig's Soil Mechanics", 7th Ed., Spon Press, 2004.
- 3. Holtz, R.D. & Kovacs, W.D., "An Introduction to Geotechnical Engineering", Prentice Hall, 1981.
- 4. Lambe, T.W. & Whitman, R.V., "Soil Mechanics", John Wiley & Sons, 1979.
- 5. Mitchell, J.K. & Soga, K., "Fundamentals of Soil Behaviour", John Wiley & Sons, 2005.
- 6. Coduto, D.P. "Geotechnical Engineering: Principles and Practices", Pearson Education, Prentice Hall, 2007.
- 7. Bolton, M.D. "A Guide to Soil Mechanics", Universities Press, 2003.
- 8. Das, B.M. "Principles of Geotechnical Engineering", Thomson Books, 2013.

12

8

E-REFERENCES

- 1. https://nptel.ac.in
- 2. https://nptel.ac.in/courses/105/101/105101201/
- 3. http://www.nitttrchd.ac.in/sitenew1/civil/civil.php#page=page-1

IS Codes

1. IS 1498:1970, Classification and identification of soils for general Engineering purposes (first revision) Reaffirm Dec 2011

	P01	P02	PO 3	PO 4	PO 5	9 O 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	1		1		1		2		1		1	2	2
CO 2	1	2	1	1		2		2		1		1	2	2
CO 3	2	1	1	1		1		3		1	1	1	2	2
CO 4	1	2	1	1	1	1		2		1	1	1	2	2
CO 5	1	3	1	1	1	1	2	2	3	1	1	1	2	2
Total	7	9	4	5	2	6	2	11	3	5	3	5	10	10
Scaled Value	2	2	1	1	1	2	1	3	1	1	1	1	2	2

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	r	:	: 11	[
Cou	ırse (Code	:	: P	CE 203									
Со	irse l	Name	e :	: C	ONCRETE	TECHNO	OLOGY	7						
Pre	requ	isite	:	: N	IL									
	L	Т	Р	С		С	Р	Α		L	Т	Р	Н	
	3	0	0	3		2.5	0	0.5		3	0	0	3	
C	<u> </u>	01.			1				1					1

Course Objectives

- Acquire knowledge on construction materials
- Study the properties of fresh and hardened concrete.
- Learn the mix design procedure

Course be able	<i>j i j i j i j i j i j i j j j j j j j j j j</i>	Domain C or P or A	Level
CO1	Identify and test the properties of ingredients of Concrete	С	(Understand)
CO2	Identify and test the properties of Concrete	С	(Remember)
CO3	Carry out the mix design of M20 and M35 as per IS456	C,A	(Understand)
		C,A	Manipulation
CO4	Ensure quality during Transporting, Laying, Compacting		(Understand)
	and finishing of concrete	C,A	Manipulation
CO5	<i>Adopt</i> special concreting technologies to meet out the modern construction requirements.	С	(Remember)

COURSE CONTENT

UNIT I **CONSTITUENT MATERIALS**

Cement: - Properties - Testing - modern methods of analysis - Blended Cements; Aggregates: Classification- Properties - Testing - Artificial aggregates; Water: Various sources - Quality Testing; Admixtures and Chemicals: Properties - Uses - Use of eco-friendly recyclable and sustainable materials

UNIT II **FRESH CONCRETE**

Rheology - Workability: Factors affecting - Measurement - Testing; Manufacture of concrete: Process -Compaction; Properties: Segregation - Bleeding - Setting times - Curing - Finishing.

UNIT III HARDENED CONCRETE

Strength: Compressive - Tensile - Flexure - Strength relationships - Testing as per IS codes -Factors influencing strength – NDT techniques; Thermal properties: Durability of concrete: Shrinkage - Creep - Cracks - Acid, Sulphate and Chloride attack.

UNIT IV CONCRETE MIX DESIGN

Concepts of mix design - Factors influencing mix design - ACI and IS code recommended mix design methods; Non-pumpable concrete; Pumpable concrete:.

9

9

9

UNIT V SPECIAL CONCRETES

Manufacture, Properties and Uses: High strength and high performance concrete -Waterproofing concrete - Fiber Reinforced concrete - Light weight and High Density Concrete - Aerated - No fines - Organic concrete; Special concreting methods: Self compacting concrete - Hot and Cold weather concreting - Prepacked - Vacuum - Gunite and Shotcrete – Ferrocement - Quality control - Sampling and testing-Acceptance criteria

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Shetty M S. Concrete Technology: Theory and Practice, 7th Edition, S. Chand & Company Ltd-New Delhi, 2014.
- 2. Varghese PC. Building Materials (English), 2nd Edition, PHI Learning, 2014.
- 3. Neville AM. Properties of Concrete, Pearson India, 2012.
- 4. Zongjin Li. Advanced Concrete Technology, John Wiley & Sons. 2011.

REFERENCE BOOKS

- 1. Santhakumar AR. Concrete Technology, 1st Edition, Oxford University Press-New Delhi, 2006.
- 2. Ghambir ML. Concrete Technology, 5th Edition, McGraw Hill Education, 2013.
- 3. Sandor Popovic. Concrete Materials, 2nd Ed.: Properties, Specifications, and Testing, William Andrew, 2012.
- 4. John Newman. Advanced Concrete Technology 3: Processes 1st Edition, Elsevier Science, 2003.

E-REFERENCES

http://nptel.ac.in/courses/105102012

http://nptel.ac.in/courses/105104030

http://freevideolectures.com/Course/3357/Concrete-Technology

http://engineeringvideolectures.com/course/289

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1	3	1	1					1	3	1	3	1	
CO 2					1				2	2				
CO 3	1	3	3	3					1				3	
CO 4	1					1	1		1			1		1
CO 5					1					3				
Total	3	6	4	4	2	1	1		5	8	1	4	4	1
Scaled Value	1	2	1	1	1	1	1		1	2	1	1	1	1

Note:

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Course	er Code		: II : P	**204										
Course	Name	e :	: D	ISASTER MA	NAGE	MENT								
Prereq	uisite	:	: N	IL										
L	Т	Р	С		С	Р	Α			L	Т	Р	Η	
0	0	0	0		3	0	0			2	0	0	2	
		ome: 1	After	the completion	of the	course, s	students	will	Don	nain	1	1	Leve	
be able	to								C or l	P or A	4			
C O 1	Under types	stand	the o	concepts of dis	asters, tl	neir sign	ificance	and	Cognitiv	ve		Unde	erstanc	
C O2				elationship bet on and risk red		lnerabili	ty, disas	sters,	Cogniti	ve		Understand		
C O3				nding of prelin (DRR)	ninary ap	proache	s of Dis	aster	Cogniti	ve		Unde	erstand	
C O4	Devel	op av	varene	ess of institutio	nal proc	esses in	the cour	ıtry	Cognitiv	ve		Appl	ication	
C O5	Devel	elop rudimentary ability to respond to oundings with potential disaster response in areas v							Cogniti	ve		Appl	icatio	

COURSE CONTENT

UNIT I INTRODUCTION TO DISASTERS

Importance & Significance, Types of Disasters, Climate Change, DM cycle

UNIT II RISK ASSESSMENT

they live, with due sensitivity

Risk, Vulnerability, Types of Risk, Risk identification, Emerging Risks, Risk Assessment, Damage Assessment, Risk modeling.

UNIT III DISASTER MANAGEMENT

Phases, Cycle of Disaster Management, Institutional Framework, Incident Command System, DM Plan, Community Based DM, Community health and safety, Early Warning and Disaster Monitoring, Disaster Communication, Role of GIS and Remote Sensing, Do's and Don'ts in various disasters.

UNIT IV DISASTER RISK MANAGEMENT IN INDIA

Hazard and Vulnerability profile of India, Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness), Disaster Management Act and Policy – Other related policies, plans, programmes and legislation

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES

Landslide Hazard Zonation, Earthquake Vulnerability Assessment of Buildings and Infrastructure, Drought Assessment, Coastal Flooding, Forest Fire, Man Made disasters, Space Based Inputs for Disaster Mitigation and Management, Cast Study

L	Т	Р	Total
45	0	0	45

6

12

10

10

TEXT BOOKS

- 1. Singhal J.P. Disaster Management, Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 2. Tushar Bhattacharya, Disaster Science and Management, McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10**: 1259007367, **ISBN-13**: 978-1259007361)
- 3. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 4. KapurAnu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010

REFERENCE BOOKS

- 1. Siddhartha Gautam and K Leelakrisha Rao, "Disaster Management Programmes and Policies", Vista International Pub House, 2012
- 2. Arun Kumar, "Global Disaster Management", SBS Publishers, 2008
- 3. Pardeep Sahni, Alka Dhameja and Uma medury, "Disaster mitigation: Experiences and reflections", PHI, 2000
- 4. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005
- 5. Government of India, National Disaster Management Policy, 2009

E-REFERENCES

- NIDM Publications at http://nidm.gov.in- Official Website of National Institute of Disaster Management (NIDM), Ministry of Home Affairs, Government of India
- http://cwc.gov.in , http://ekdrm.net , http://www.emdat.be , http://www.nws.noaa.gov , http://pubs.usgs.gov , http://nidm.gov.ini http://www.imd.gov.ini

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1			2	1	1		1		1		1	1		
CO 2	1	1	3	2	3		1	1						
CO 3					2		1		1					
CO 4	1	1	2	2	2		1				1	1		
CO 5	2	3		2	3		1	2	1			2		
Total	4	5	7	7	11		5	3	3		2	4		
Scaled Value	1	1	2	2	3		1	1	1		1	1		

Mapping of CO with PO's

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Sen	neste	r	:	I	[
Cou	ırse (Code	:	P	CE205									
Cou	Course Name : GEOTECHNICAL ENGINEERING LAB													
Pre	Prerequisite : GEOTECHNICAL ENGINEERING													
	L	Т	Р	С		С	Р	Α		L	Т	Р	Н	
	0	0	2	2		2	0.5	0.5		0	0	2	2	

Course Objectives

- To understand the handling of equipments
- To provide the hands on training in determination of Engineering and index properties of soils, applied in field problems.
- To provide the knowledge on the use of experimental results pertaining to foundation problems

Course be able	e Outcome: After the completion of the course, students will e to	Domain C or P or A	Level			
CO1	<i>Identify</i> and <i>analyze</i> various types of soils for engineering utilization.	ing Psychomotor Remember Observation				
CO2	<i>Determine</i> the necessary index and engineering properties of soils.	Psychomotor	Analyzing Respond to Phenomena Observation			
CO3	<i>Investigate</i> the soil using appropriate methods and equipments.	Psychomotor	Remembering Observation			

COURSE CONTENT

Experiments	in	Geotechnical	Engineering

- Water content determination (Oven drying method)
- Grain size distribution Sieve analysis and Hydrometer analysis
- Determination of Specific gravity by Pycnometer and density bottle method
- Determination of Liquid and Plastic limit (Casagrande method)
- Determination of Shrinkage limit of soil
- Determination of moisture-density relationship (Standard Proctor's)
- Determination of Permeability by Constant and Variable head method
- Determination of in-situ density by sand replacement and core cutter method
- Determination of Relative density Sand
- Unconfined compression test for fine grained soils
- Triaxial Compression Test
- Direct shear test for coarse grained soils
- California Bearing Ratio (CBR) Test
- Plate load test, SPT and SCPT study experiments

L	Т	Р	Total
0	0	30	30

TEXT BOOKS

- 1. Murthy, V. N. S. "Geotechnical Engineering: Principles and Practices ofSoil Mechanics and Foundation Engineering", CRC Press, 2002
- 2. Ranjan, Gopal & Rao, A.S.R., "Basic and Applied Soil Mechanics", New Age Int. Pvt. Ltd., 2004.

REFERENCE BOOKS

- 1. K.H. Head and R. J. Epps, "Manual of Soil Laboratory Testing vol II", 3rd Edition, Whittles Publishing, 2011.
- 2. B.M. Das, "Soil Mechanics Laboratory Manual", 6th Ed., London, University Press, 2001.
- 3. 2. J.E. Bowles, "Physical Properties of Soils", 2nd Ed., McGraw Hill International, Singapore, 1990.

E-REFERENCES

- 1. https://nptel.ac.in
- 2. https://nptel.ac.in/courses/105/101/105101201/
- 3. http://www.nitttrchd.ac.in/sitenew1/civil/civil.php#page=page-1

IS Codes

- 1. IS 1498:1970, Classification and identification of soils for general Engineering purposes (first revision) Reaffirm Dec 2011
- 2. IS 1888: 1982 Method of Load Test on Soils. IS 1892: 1979 Code of Practice for Subsurface Investigation for Foundations
- 3. IS 2131: 1981 Method for Standard Penetration Test for Soils.
- 4. IS 2720: Part 31: 1990 Methods of Test for Soils Part 1 to 31:
- IS 4968: Part III: 1976 Method for Subsurface Sounding for Soils Part II: Static Cone Penetration Test.

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2				3			1				1	1	1
CO 2	2				3			1				1	1	1
CO 3	2				3			1	1	1		1	1	1
Total	6				9			3	1	1		3	3	3
Scaled Value	2				2			1	1	1		1	1	1

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Sen	iestei	r	:	I	Ι										
Cou	ırse (Code	:	P	PCE 301										
Course Name : STRUCTURAL ANALYSIS															
Pre	Prerequisite : MECHANICS OF SOLIDS														
	L	Т	Р	С		С	Р	Α		L	Т	Р	H		
	3	1	0	4		2	0	1		3	2	0	5		
a		<u>.</u>		-	•			•			•	•			

Course Objectives

Students will be exposed to the theories and concepts of structural analysis.

An understanding of real issues in the behaviours of structures.

To introduce the students to various methods for the analysis of buildings

Course able to	e Outcome: After the completion of the course, students will be	Domain C or P or A	Level
CO1	Identify the behavior of structural element under various loading condition.	Cognitive Affective	Understand & Analyse
CO2	Analyse the continuous beams and rigid frames by slope defection method.	Cognitive Affective	Understand & Analyse
CO3	Understand the concept of moment distribution and analysis of continuous beams and rigid frames with and without sway.	Cognitive Affective	Understand & Analyse
CO4	Superimpose the effects of settlement and rotation of the supports over the regular analysis.	Cognitive Affective	Understand & Analyse
CO5	Apply knowledge on advanced methods of analysis of structures including arches and cables.	Cognitive Affective	Understand & Analyse

COURSE CONTENT

UNIT I INDETERMINATE FRAMES

Degree of static and kinematic indeterminacies for beams and plane frames - analysis of indeterminate pin-jointed frames - rigid frames.

UNIT II SLOPE DEFLECTION METHOD

Continuous beams and Rigid frames (with And without sway) – Symmetry and Asymmetry– Simplification for hinged end – Support Displacements.

UNIT III MOMENT DISTRIBUTION METHOD

Stiffness and carry over factors-Distribution and carryover of Moments– Analysis of continuous Beams with and without displacement – Plane Rigid Frames with and without Sway

UNIT IV MOVING LOADS AND INFLUENCE LINES

Influence lines for reactions in statically determinate structures – Influence lines for shear force and bending moment in beam sections – Calculation of critical stress resultants due to concentrated and distributed moving loads.

UNIT V ARCHES AND SUSPENSION CABLES

Types of Arches – Transfer of loads - Arch action- Horizontal forces- Analysis of Parabolic and Circular Arches(Hinged, fixed)- Cables- Components and their functions – Analysis of Suspension Cables, Reaction-Tension and Length of suspension cables.

L	Т	Р	Total
30	30	0	60

12

12

12

12

TEXT BOOKS

- 1. Vaidyanadhan, R and Perumal, P, "Comprehensive Structural Analysis Vol. 1 & Vol. 2", Laxmi Publications, New Delhi, 2013.
- 2. L.S. Negi& R.S. Jangid, Structural Analysis", Tata McGraw-Hill Publications, New Delhi, 2013
- 3. S SBhavikatti, Structural Analysis", Vikas Publishing House, 2011.

REFERENCE BOOKS

- 1. C.K. Wang, "Analysis of Indeterminate Structures", Tata McGraw-Hill, 2010.
- 2. B.C Punmia, Ashok Kumar Jain, Arun Kumar Jain, "Theory of Structures", Laxmi Publication, 2012.
- 3. DevdasMenon, "Structural Analysis", Narosa Publishers, 2010.

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	3				1							1	
CO 2	3	1	1			1								
CO 3	1	3	2					1	1		1			
CO 4	3	2	2		1	1					1		1	
CO 5	1	1	1		1								1	1
Total	10	10	6		2	3	2	1	1		2		3	1
Scaled Value	2	2	2		1	1	1	1	1		1		1	1

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

: 11	II									
: P	CE 302									
Course Name : TRANSPORTATION ENGINEERING										
: N	IL									
P C		С	Р	Α		L	Т	Р	Н	
0 3		2	0.5	0.5		3	0	0	3	
	: P : T : N P C	: NIL P C	PCE 302 TRANSPORTATION I NIL PCCC	: PCE 302 : TRANSPORTATION ENGINI : NIL P C C P	: PCE 302 : TRANSPORTATION ENGINEERING : NIL P C P C	: PCE 302 : TRANSPORTATION ENGINEERING : NIL P C P C	: PCE 302 : TRANSPORTATION ENGINEERING : NIL P C P A L	: PCE 302 : TRANSPORTATION ENGINEERING : NIL P C P A L T	: PCE 302 : TRANSPORTATION ENGINEERING : NIL P C P A L T P	: PCE 302 : TRANSPORTATION ENGINEERING : NIL P C P A L T P H

Course Objectives

- To understand the importance of transportation and characteristics, the history of highway development, surveys and classification of roads
- To study about the geometric design of highways, traffic characteristics and design of intersections, the pavement materials and design
- To know about the basics and design of various components of railway engineering, the types and functions of track, junctions and railway stations
- To learn about the aircraft characteristics, planning and components of airport
- To study about the types and components of docks and harbours
- To know about various urban transportation systems and Intelligent Transportation Systems

Course Outcome: After the completion of the course, students will Domain C Level be able to Or P or A

$v\epsilon$		UIUA			
CC	1 <i>Carryout</i> surveys involved in planning and highway alignment, <i>design</i> cross section elements, sight distance, horizontal and vertical alignment	Cognitive & Affective Psychomotor	Remembering Respond & Observation		
CC	1 Implement traffic studies, traffic regulations and control, and intersection design determine the characteristics of pavement materials design flexible and rigid pavements as per IRC	Cognitive Psychomotor	Analyzing Observation		
CC	Carry out the surveys for railways, airports and harbours	Cognitive, Affective & Psychomotor	ApplicationRespondtoPhenomenaManipulation		
CC	Plan the layout of different types of terminals	Cognitive & Affective	Understanding Manipulation		
CC	5 <i>Demonstrate</i> the fundamentals of Intelligent Transportation Systems	Cognitive & Psychomotor	Remembering Observation		

COURSE CONTENT

UNIT I INTRODUCTION

Importance of transportation, different modes of transportation, characteristics of road transport, scope of highway and traffic engineering Highway development and planning: Importance, classification of roads, road patterns, planning surveys; highway alignment and surveys Highway Geometric Design: Cross section elements, sight distance, design of horizontal and vertical alignment

UNIT II TRAFFIC ENGINEERING

Traffic characteristics - Traffic studies-speed, volume, speed and delay, origin-destination, parking and accident studies; capacity of urban roads and highways; traffic operations-regulation and control; design of intersections- at grade and grade separated Pavement Materials and Design: Specifications and tests on pavement materials, pavement design factors, design of flexible and rigid pavements as per IRC

9

9

UNIT III RAILWAY ENGINEERING

Location surveys and alignment - Permanent way - Gauges - Components -Functions and requirements - Geometric design Track Junctions-Points and crossings - types and functions - design and layout - simple problems - Railway stations and yards. Signaling and interlocking - control systems of train movements

UNIT IV AIRPORT ENGINEERING

Aircraft characteristics - Airport obstructions and zoning - Runway - taxiways and aprons- Terminal area planning

UNIT V DOCKS AND HARBOURS AND URBAN TRANSPORTATION SYSTEMS 11

Types - Layout and planning principles- breakwaters - docks- wharves and quays - Transit sheds- warehouses- navigation aids.

Bus transit - Mass Rapid Transit System - Light Rail Transit. Transport economics and Financing - Intelligent Transportation Systems (ITS)

L	Т	Р	Total
45	0	0	45

9

7

TEXT BOOKS

- 1. Khanna, S.K and Justo, C.E.G., Highway Engineering, Nem Chand and Bros. 2001
- 2. Kadiyali, Principles of Highway Engineering, Khanna Publishers, 2019
- 3. M.M. Agarwal, Railway Engineering, Prabha & Co. 2007.
- 4. Khanna, S.K. and Arora, M.G. Airport Planning and Design, Nemchand and Bros. 1999.

REFERENCE BOOKS

- 1. Kadiyali, L.R, Traffic Engineering and Transport Planning, Khanna Publishers, New Delhi, 1999
- 2. Oza and Oza, Elements of Dock and Harbour Engineering, Charotar Publishing House, 1996.
- 3. Vazirani V N and Chandola S P "Transportation Engineering Vol.2", Khanna Publishers, 1998

E-REFERENCES

- 1. https://nptel.ac.in/courses/105/101/105101087/
- 2. https://nptel.ac.in/courses/105/105/105105107/
- 3. https://nptel.ac.in/courses/105/104/105104098/

IS Codes

1. IRC and IRC SP codes and manuals

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	3	1		1		1		2		1		1	2	1
CO 2	1	2	1	1		2		2		1		1	1	2
CO 3	1	2	1	1		1		2		1	1	1	2	1
CO 4	2	2	1	1	1	2		1		1	1	1	2	2
CO 5	1	3	1	1	1	1	2	2	3	1	1	1	1	1
Total	8	10	4	5	2	7	2	9	3	5	3	5	8	7

Scaled

Value

Note

:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

r	:	II	I									
Code	:	P	CE 303									
Name	e :	E	NVIRONMEN	NTAL E	NGINE	ERING	r r					
isite	:	N	IL									
Т	Р	С		С	Р	Α		L	Т	Р	Н	
0	0	3		2.5	0	0.5		3	0	0	3	
(Name isite T	Code : Name : isite : T P	Code : P Name : E isite : N T P C	Code : PCE 303 Name : ENVIRONMEN isite : NIL T P C	Code : PCE 303 Name : ENVIRONMENTAL E isite : NIL T P C C	Code : PCE 303 Name : ENVIRONMENTAL ENGINE isite : NIL T P C C P	Code : PCE 303 Name : ENVIRONMENTAL ENGINEERING isite : NIL T P C C P A	Code : PCE 303 Name : ENVIRONMENTAL ENGINEERING isite : NIL T P C C P A	Code : PCE 303 Name : ENVIRONMENTAL ENGINEERING isite : NIL T P C C P A	Code : PCE 303 Name : ENVIRONMENTAL ENGINEERING isite : NIL T P C C P A L T	Code : PCE 303 Name : ENVIRONMENTAL ENGINEERING isite : NIL T P C C P A L T P	Code : PCE 303 Name : ENVIRONMENTAL ENGINEERING isite : NIL T P C P A L T P H

Learning Objectives

The objectives of this course is

- To acquire the knowledge on extent of pollution on land, water and air.
- To understand the physical, chemical, and biological phenomena for successful design, operation • and maintenance of water and sewage treatment plants.

To make the students conversant with the processing and disposal of municipal solid waste and Hazardous Waste.

Course able to	e Outcome: After the completion of the course, students will be	Domain C or P or A	Level
CO1	Understand the qualities of water and wastewater	Cognitive	Knowledge
CO2	Analyse the principles of water and wastewater treatment technologies and their functions	Cognitive	Comprehension
CO3	Plan strategies to control, reduce and monitor air and noise pollution.	Cognitive	Analysis
CO4	Identify the most appropriate technique for solid waste treatment and disposal	Cognitive Affective	Understand & Analyse
CO5	Understand the fundamentals of Plumbing work in residential buildings	Cognitive Affective	Understand

COURSE CONTENT

UNIT I WATER AND SEWAGE

Water: -Sources of Water and quality issues, water quality requirement for different beneficial uses, Water quality standards, water quality indices, Water Supply systems, Need for planned water supply schemes, Water demand industrial and agricultural water requirements, Components of water supply system; Transmission of water, Distribution system, Various valves used in W/S systems, service reservoirs and design.

Sewage- Wastewater quality parameters Storm Water- Quantification and design of Storm water; Sewage and Sullage, Quantity of Sewage, Sewage flow variations. Conveyance of sewage- Sewers, shapes design parameters, operation and maintenance of sewers, Sewage pumping; Sewerage, Sewer appurtenances, Design of sewerage systems, Pollution due to improper disposal of sewage. Government authorities and their roles in water supply, sewerage disposal

UNIT II WATER AND WASTEWATER TREATMENT

Water Treatment: Aeration, sedimentation, coagulation flocculation, filtration, disinfection, advanced treatments like adsorption, ion exchange, membrane processes.

Wastewater treatment: Aerobic and anaerobic treatment systems, suspended and attached growth systems, Septic tank, grey water treatment.

10

UNIT III AIR AND NOISE

Air - Composition and properties of air, Quantification of air pollutants, Monitoring of air pollutants, Effects of Air pollution, Air pollution- Occupational hazards, Urban air pollution automobile pollution, Air quality standards, Control measures for Air pollution, construction and limitations.

Noise- Basic concept, measurement and various control methods.

UNIT IV SOLID AND HAZARDOUS WASTE MANAGEMENT

Solid waste management-Municipal solid waste, Composition and various chemical and physical parameters of MSW, Collection, transport, treatment and disposal of MSW. Special MSW: waste from commercial establishments and other urban areas, solid waste from construction activities, biomedical wastes. Government authorities and their roles in Solid waste management and monitoring/control of environmental pollution.

Hazardous waste: Types and nature of hazardous waste

UNIT V BUILDING PLUMBING

Introduction to various types of home plumbing systems for water supply and waste water disposal, high rise building plumbing, Pressure reducing valves, Break pressure tanks, Storage tanks, Building drainage for high rise buildings, various kinds of fixtures and fittings used.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Peavy, H.s, Rowe, D.R, Tchobanoglous, G. *Environmental Engineering*, Mc-Graw Hill International Editions, New York 1985.
- 2. MetCalf and Eddy. *Wastewater Engineering, Treatment, Disposal and Reuse*, Tata McGraw-Hill, New Delhi.
- 3. Integrated Solid Waste Management, Tchobanoglous, Theissen& Vigil. McGraw Hill Publication International Editions, New York 1985.
- 4. CPHEEO Manual on Water Supply And Treatment, 1999
- 5. CPHEEO Manual on Sewerage And Sewage Treatment, 1993

REFERENCES

- 1. B.C. Punmia, Watersupply Engineering, Volume -II, Laxmi Publication 2008
- 2. B.C. Punmia, Wastewater Engineering, Volume II, Laxmi Publication 2008
- 3. S.K. Garg, Wastewater Engineering, Khanna Publishers, New Delhi, 2007
- 4. Gurucharan Singh," Water supply and Sanitary Engineering", Standard Publishers Distributors, 2009
- 5. Garg, S.K., "Environmental Engineering I & II", Khanna Publishers, New Delhi 2007
- 6. Rangwala, "Water Supply and Sanitary Engineering PB,24/e, Charotar Publishing house Pvt. Ltd.-Anand, 2011
- 7. Introduction to Environmental Engineering and Science by Gilbert Masters, Prentice Hall, New Jersey.
- 8. Standard methods for the Examination of Water and Wastewater,17thEdition,WPCF,APHA and AWWA,USA,1989.

8

Mapping of CO with PO's

	PO1	P02	PO 3	P0 4	PO 5	P0 6	PO 7	PO 8	6 O	PO 10	PO 11	PO 12	PS01	PSO2
CO 1		1	3	1	1	1			1				1	
CO 2		1	3	1	1	1			2				2	1
CO 3	1		1	2			1		1		1		2	
CO 4	1	1	1	1			1		2		1		1	
CO 5			2	2					3			2	5	
Total	2	3	9	7	2	2	2		9		2	2	11	1
Scaled Value	1	1	2	2	1	1	1	0	2	0	1	1	3	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	r	:	II	Ι									
Cou	urse	Code	:	Р	CE304									
Cou	urse l	Name	e :	E	NVIRONMEN	NTAL E	NGINE	ERING	LAB					
Pre	requ	isite	:											
	L	Т	Р	С		С	Р	Α		L	Т	Р	Η	
	0	0	2	2		3	0	0		0	0	2	2	

Course Objectives

- To understand the analysis of water and Waste water
- To understand the level of Noise pollution
- To gain knowledge about the suitability of water for drinking and construction purpose
- To provide the knowledge of effluent standards for disposal.

	e Outcome: After the completion of the course, students e able to	Domain C or P or A	Level
CO1	Understand and analyse the qualities of water	Psychomotor	Understanding & Observation
CO2	Understand and analyse the qualities of waste water	Psychomotor	Understanding & Observation
CO3	Identify the level of Noise pollution	Psychomotor	Analyzing
CO4	Gather the knowledge about the suitability of water and effluent disposal standards	Affective & Psychomotor	Analyzing & Observation

EXPERIMENTS

1. Physical Characterization of water: Turbidity, Electrical Conductivity, pH

- 2. Analysis of solids content of water: Dissolved, Settleable, suspended, total, volatile
- 3. Alkalinity and acidity
- 4. Total Hardness
- 5. Analysis of ions: chloride and sulfate
- 6. Optimum coagulant dose
- 7. Residual chlorine
- 8. Dissolved Oxygen (D.O) and Biochemical Oxygen Demand (BOD)
- 9. Chemical Oxygen Demand (COD)
- 10. Ambient noise measurement

TEXT BOOKS

- 1. CPHEEO Manual on Water Supply And Treatment, 1999
- 2. CPHEEO Manual on Sewerage And Sewage Treatment, 1993

30 HRS.

P - 30Hrs.

REFERENCES

1. Standard methods for the Examination of Water and Wastewater,17thEdition,WPCF,APHA and AWWA,USA,1989.

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	2	2			1				1			1		
CO 2	2	2			1				1			1		
CO 3	2	1			1				1			1		
CO 4	2		3		1	1	1		1					1
Total	8	5	3		4	1	1		4			3		1
Scaled Value	2	1	1		1	1	1		1			1		1

Note:	Total	0	1-5	6-10	11-15		
	Scaled value	0	1	2	3		
	Relation	No	Low	Medium	High		

Sen	neste	r	:	: 1	Π									
Co	urse	Code	:	: P	CE305									
Co	Course Name : CONCRETE AND HIGHWAY LAB													
Pre	Prerequisite : TRANSPORTATION ENGINEERING													
	L	Т	Р	С		С	Р	Α		L	Т	Р	H	
	0	0	2	2		2	0.5	0.5		0	0	2	2	

Course Objectives

- To understand the handling of equipments
- To provide the hands on training in determination of properties of pavement materials
- To provide the knowledge on the use of experimental results pertaining to pavement design

Course be able	e Outcome: After the completion of the course, students will e to	Domain C or P or A	Level
CO1	Identify and analyze various types of pavement materials	Psychomotor	Remembering & Observation
CO2	<i>Determine</i> the necessary properties of pavement materials	Psychomotor	Analyzing Respond to Phenomena Observation
CO3	<i>Investigate</i> the appropriate methods and equipments.	Psychomotor	Remembering Observation

COURSE CONTENT

Experiments in Transportation Engineering 3	0

Tests on Aggregates

- CBR test.
- Aggregate crushing value test.
- Los Angeles abrasion value test of aggregates.
- Aggregate impact value test.
- Shape test of aggregates Flakiness Index
- Specific gravity and water absorption test for coarse aggregates.
- Fineness modulus

Tests on Bituminous Materials

- Softening point (Ring and ball test) of bitumen.
- Penetration value test of bitumen.
- Marshall Stability test.
- Specific gravity.
- Loss on heating
- Design of B C mix
- Binder content

L	Т	Р	Total
0	0	30	30

TEXT BOOKS

- 1. Khanna.S. K., Justo.C.E.G and Veeraragavan A. "Highway Engineering", Nemchand Publishers, 2014.
- 2. Subramanian K.P., "Highways, Railways, Airport and Harbour Engineering", Scitech Publications (India), Chennai, 2010
- 3. Kadiyali.L.R. "Principles and Practice of Highway Engineering", Khanna Technical Publications, 8th edition Delhi, 2013.

REFERENCE BOOKS

- 1. Highway Materials and Pavement Testing, Nem Chand and Bros., Roorkee, Revised Fifth Edition, 2009
- 2. Mix Design Methods Asphalt Institute Manual Series No. 2, Sixth Edition, 1997, Lexington, KY, USA

E-REFERENCES

1. https://www.vlab.co.in/ba-nptel-labs-civil-engineering

IS Codes

- 1. Methods for testing tar and bituminous materials, IS 1201-1978 to IS 1220- 1978, Bureau of Indian Standards
- 2. Methods of test for aggregates, IS 2386 1978, Bureau of Indian Standards

Mapping of CO with PO's

	P01	PO2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2				3			1				1	1	1
CO 2	2				3			1				1	1	1
CO 3	2				3			1	1	1		1	1	1
Total	6				9			3	1	1		3	3	3

Scaled

Value

Note:

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Seme	ster		: IV									
Subject Name : DESIGN OF RCC STRUCTURES												
Subject Code : PCE401												
Prerequisite : STRUCTURAL ANALYSIS												
L	Т	Р	Н		С	Р	Α		L	Т	Р	Н
3	1	0	4		2.5	0	0.5		3	1	0	4

Course Objectives

- 1. Students will be exposed to the theories and concepts of structural design.
- 2. Hands-on design experience and skills will be gained and learned through problem sets and a comprehensive design project using software.
- 3. An understanding of real-world open-ended design issues will be developed.

Course will be a	<i>Outcome: After the completion of the course, students ble to</i>	Domain C or P or A	Level
CO1	Perceive the knowledge on basics of design	Cognitive	Understand
CO2	Interpret ultimate and serviceability limit state approaches in current structural design philosophy	Cognitive	Understand
CO3	Understand the design concept of structural elements	Cognitive & Affective	Analyse & Apply
CO4	Model building structure and analyse structural elements for design actions	Cognitive & Affective	Analyse & Apply
CO5	Analyse and design different types of footing	Cognitive & Affective	Analyse & Apply

COURSE CONTENT

UNIT I METHODS OF DESIGN OF CONCRETE STRUCTURES

Study of the strength, 45ehavior, and design of indeterminate reinforced concrete structures, Load and stresses, load combinations, Working stress and limit state approach. Concepts of Yield line theory

UNIT II LIMIT STATE DESIGN FOR FLEXURE 12 Design of one way and two way slab - singly and doubly reinforced beams- continuous beams -- Flanged beams -- Staircase. LIMIT STATE DESIGN FOR SHEAR, BOND AND TORSION 12

UNIT III

Behaviour of RC members in bond and anchorage - Design requirements -Behaviour of RC beams in shear and torsion – Design of RC members for combined bending shear and torsion.

DESIGN OF COLUMNS UNIT IV

> Types of columns -Design of short columns for axial, uniaxial and biaxial bending -Design of slender column.

UNIT V **DESIGN OF FOOTINGS**

Design of Isolated footings (Flat and Sloped) – Design of combined rectangular footing for two columns only - Design of Raft Footing.

12

12

L	Т	Р	Total
45	15	0	60

TEXT BOOKS

- 1. Varghese, P.C., "Limit State Design of Reinforced Concrete", Prentice Hall of India, Pvt. Ltd., New Delhi,Second Edition, 2010.
- 2. Krishna Raju, N., "Design of Reinforced Concrete Structures", CBS Publishers & Distributors, New Delhi,2007.

REFERENCES

- 1. DevadasMenon&UnnikrishnanPillai, Reinforced Concrete Design,Tata McGraw-Hill Publishing Company Ltd., New Delhi 2011
- 2. Dr.P.Purushothaman, Reinforced Concrete Structures, Oxford Publication (P) Ltd, Delhi, 2007.
- 3. M.L.Gambhir, Design of reinforced concrete structures, PHI Learning Private Limited, 2013.
- 4. IS 456 -2000, Plain and Reinforced Concrete Code of Practice, 4th revision
- 5. SP16-1980.

Mapping of course outcomes with program outcomes

	P01	P02	P03	P04	P05	P06	P07	P08	909	P010	P011	P012	PSO1	PSO2
CO1	3		1										2	
CO2	2	3		1		1	1						3	1
CO3	1	1	3	1		1	1	1			1		1	
CO4	1		2	1				1	1		1		3	
CO5	1		2	1				1	1		1		3	
	8	4	8	4		2	2	3	2		3		12	1

Note:

Total	0	1-5	6-10	11-15	
Scaled value	0	1	2	3	
Relation	No	Low	Medium	High	

IV

Course Code	:	PCE 402
-------------	---	---------

Р

0

:

:

С

3

Course Name : GEOTECHNICAL ENGINEERING – II

Prerequisite

L

2

MECHANICS OF SOLIDS AND GEOTECHNICAL ENGINEERING - I

С	Р	Α
2	0.5	0.5

L	Т	Р	Η
2	1	0	3

Course Objectives

Т

1

- To understand the application of soil properties in stability of slope analysis, improvement of soil strength and effect of lateral earth pressure on geostructures.
- To estimate the load carrying capacity of different types of soils
- To satisfy the expectation of ability of calculating the dimensions of shallow foundations
- To know about the types, analysis and design of deep foundations, geo-environmental, geotechnical earthque engineering

Course be able	<i>Outcome: After the completion of the course, students will to</i>	Domain C or P or A	Level
CO1	<i>Identify</i> and <i>analyze</i> different types slope failures.	Cognitive & Affective	Remembering & Analyzing
CO2	<i>Analyze</i> earth retaining structures with different loading conditions and able to understand the soil stabilization methods	Cognitive Affective	Analyzing & Responding
CO3	Determine the safe bearing capacity of different soils. Calculate the size and shape of foundation required for actual loading from structures.	Cognitive, Affective & Psychomotor	Applyzing & Manipulating
CO4	Demonstrate the failure modes of piles, piers and caissons	Cognitive & Psychomotor	Understanding & Manipulating
CO5	<i>Understand</i> the effect of soil pollution and soil dynamics on foundation performance	Cognitive & Affective	Remembering Analyzing

COURSE CONTENT

UNIT I STABILITY OF SLOPES

Classifications of slopes, Stability analysis of infinite slopes. Stability analysis of finite slopes by Swedish and Friction circle method.

Stability analysis by Taylor's stability number, Taylor stability number

curves. Stability of slopes of earthen embankments under sudden draw down, steady seepage and during construction. Bishop's method of stability analysis.

UNIT II SOIL RETAINING WALLS AND GROUND IMPROVEMENT TECHNIQUES

Active, passive and earth pressure at rest. Rankine's and Coulomb's theories of earth pressure. Rebhann's and Culman's graphical methods for active earth pressure for vertical and inclined back retaining walls, horizontal and inclined cohesion less back fill. Earth pressure on cantilever sheet piles Stability analysis of retaining walls.

Ground modification by vibro replacement, stone columns, preloading and prefabricated drains, Reinforced earth structures, Introduction to geotextiles and geomembranes,

8

applications of geotextiles, design methods using geotextiles, geogrids, geonets, geomembranes, geotubes, grouting, deep mixing, PVDs, vacuum consolidation.

UNIT III BEARING CAPACITY OF SOIL AND SHALLOW FOUNDATIONS

Methods of estimation of bearing capacity, effect of water table on bearing capacity, Terzaghi, Vesic, Hansen, Moyerhof's analysis, Bearing capacity of stratified soils. IS code recommendations for minimum depth, factor of safety, design for local shear and general shear failure. Methods of estimation of settlement of footings. Limits of settlements for various structures, Methods of finding out bearing capacity from plate load test, standard penetration test data. Collapsible soil; Identification, Collapse settlement: foundation design. Behaviour of expansive soil, foundation practices, underreamed piles. Methods of finding out load carrying capacity of under reamed piles in clayey and sandy soil. Provision of IS 2911 Part III-1980 for design of under-reamed pile foundations.

UNIT IV DEEP FOUNDATIONS AND MACHINE FOUNDATIONS

10

10

Philosophy of deep foundation, piles - classification, estimation of individual and group capacity, static and dynamic approaches, pile load test, settlement of pile and pile groups, negative skin friction. piers, caissons or well foundation – analysis, tilting and corrections, Cofferdams – construction, use.

Machine foundations; introduction, machine vibration, structural design of foundation to rotary machines, impact machines, vibration characteristics, design consideration of foundation to impact machine, grillage, pile and raft foundation.

UNIT V ENVIRONMENTAL GEOTECHNOLOGY AND EARTHQUAKE GEOTECHNOLOGY

9

A consideration of technical and scientific aspects of key geo-societal issues. Case studies and analysis of current and historic databases will be used to illustrate topics including impact of climate change, energy resources, water and soil pollution, and health risks posed by heavy metals and emerging pollutants. Sanitary land fills, settlement of sanitary land fill.

Introduction to soil dynamics, Different methods of analysis for earthquake conditions - Pseudo-static method of design - Effect of earthquake forces on various foundations, Liquefaction, Tsunami, soil behavior during earthquake – foundation settlement and land sliding during earthquake – remedial measures.

Application of Remote Sensing, GIS and GPS in contaminated soil mapping and other geotechnical study

L	Т	Р	Total
30	15	0	45

TEXT BOOKS

- 1. Murthy, V. N. S. "Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering", CRC Press, 2002
- 2. Purushothama Raj, P. Ground Improvement Techniques, Laxmi Publications. 2016
- 3. Venkatramaiah, C. "Geotechnical Engineering", New Age International Publishers, New Delhi, 3rd edition, 2005, Reprint 2011.
- 4. Punmia. B.C., Asok Kumar Jain and Arun Kumar Jain, "Soil Mechanics and Foundations" Laxmi Publications Pvt. Ltd., New Delhi, Sixteenth edi.tion, 2005

REFERENCE BOOKS

- 1. Terzaghi, K., Peck, R. B. & Mesri, G., "Soil Mechanics in Engineering Practice", Wiley, 1996.
- 2. Craig, R.F. "Craig's Soil Mechanics", 7th Ed., Spon Press, 2004.

- 3. Holtz, R.D. & Kovacs, W.D., "An Introduction to Geotechnical Engineering", Prentice Hall, 1981.
- 4. Lambe, T.W. & Whitman, R.V., "Soil Mechanics", John Wiley & Sons, 1979.
- 5. Mitchell, J.K. & Soga, K., "Fundamentals of Soil Behaviour", John Wiley & Sons, 2005.
- 6. Coduto, D.P. "Geotechnical Engineering: Principles and Practices", Pearson Education, Prentice Hall, 2007.
- 7. Jie Han, "Principles and Practice of Ground Improvement", John Wiley & Sons, 2020
- 8. Das, B.M. "Principles of Geotechnical Engineering", Thomson Books, 2013.

E-REFERENCES

- 1. https://nptel.ac.in
- 2. https://nptel.ac.in/courses/105/101/105101201/
- 3. http://www.nitttrchd.ac.in/sitenew1/civil/civil.php#page=page-1

IS Codes

- 1. IS : 2974 (Part I to V) code of practice for different types of machine foundation
- 2. IS : 6403 2016 Code of practice for shallow foundation
- 3. IS : 1904 2002 Code of practice for design and construction of foundation
- 4. IS: 2911 20016 Code of practice for design and construction of pile
- 5. IRC 78 2000 Code of practice for road bridges and specifications

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1	1		1		1		1		1		1	1	2
CO 2	2	1	1	1		1		2		1		1	2	2
CO 3	1	1	2	1	1	1		3		2	1	1	1	2
CO 4	1	1	1	1	1	1		1		1	1	1	2	2
CO 5	2	2	1	1	1	1	1	3	3	1	1	1	2	2
Total	7	6	5	5	3	5	1	10	3	6	3	5	8	10

Scaled

Value

Note:

Total	0	1-5	6-10	11-15
Scaled value	Scaled 0		2	3
Relation	No	Low	Medium	High

Sem	ester	•	:	IV	7									
Cou	rse (Code	:	P	CE403									
Cou	rse N	lame	:	C	ONSTRUCTI	ON ENC	GINEEF	RING &	MANAGEM	ENT				
Prer	requi	site	:	ST	FRUCTURAL	ANAL	YSIS							
	L	Т	Р	С		С	Р	Α		L	Т	Р	Н	

COURSE OBJECTIVES

To introduce the students to the basic concepts and principles of construction management.

To familiarize the students with the various construction management techniques including scheduling, resource management.

To study the elements of quality control and safety of construction projects.

COURSE O	UTCOMES	DOMAIN	LEVEL		
At the end o	f this course, the students should be able to				
CO1	Understand the basic concepts of construction management such as types and functions of management, life-cycle stages of projects, project delivery types of contracts, and bidding	Cognitive	Understanding		
CO2	Ascertain a basic ability to plan, control and monitor construction projects with respect to time and cost	Cognitive Affective	Understanding Responding		
CO3	Understanding of modern construction practices.	Cognitive	Understanding		
CO4	Receiving an idea how construction projects are administered with respect to contract structures and issues.	Cognitive Affective	Understanding Responding		
CO5	Ability to put forward ideas and understandings to others with effective communication processes.	Cognitive Affective	Understanding Responding		

COURSE CONTENT

UNIT I	BASICS OF CONSTRUCTION ()5
	Unique features of construction, construction projects types and features, phases of a project, Agencies involved and their methods of execution.	
UNIT II	CONSTRUCTION PLANNING AND SCHEDULING	13
	Stages of project planning: pre-tender planning, Pre-construction planning, detailed construction planning, Process of development of plans and schedules, work break-dow structure, activity lists, estimating durations, sequence of activities, Techniques of planning- Bar charts, Gantt Charts. Networks: preparation of CPM networks: activity on link and activity on node representation computation of float values, PERT- determining three time estimates, analysis.	/n of
UNIT III	CONSTRUCTION METHODS & EQUIPMENT BASICS)9
	Types of foundations and construction methods; Basics of Formwork and Stagin Common building construction methods (conventional walls and slabs; Basics of SI forming for tall structures)Equipment for Earthmoving, Dewatering; Concrete mixin transporting & placing; Cranes, Hoists and other equipment for lifting; Equipment for	ip g,

transportation of materials.

UNIT IV PROJECT PLANNING,ORGANIZING, MONITORING & CONTROL

Site layout including enabling structures, developing site organization, Documentation at site; Manpower: planning, organizing, staffing, motivation; Materials: concepts of planning, procurement and inventory control; Equipment: Funds: cash flow, sources of funds; and S-Curves. Earned Value; Resource Scheduling- Bar chart, resource constraints and conflicts; Common Good Practices in Construction. Supervision, record keeping, periodic progress, reports, periodical progress meetings. Updating of plans: purpose, frequency and methods of updating. Common causes of time and cost overruns and corrective measures.

UNIT V CONSTRUCTION QUALITY & CONTRACTS MANAGEMENT

09

09

Concept of quality, quality of constructed structure, use of manuals and checklists for quality control, role of inspection, basics of statistical quality control. Safety, Health and Environment on project sites: accidents; their causes, effects and preventive measures, costs of accidents, occupational health problems in construction, organizing for safety and health.

Importance of contracts; Types of Contracts, parties to a contract; Common contract clauses (Notice to proceed, rights and duties of

Various parties, notices to be given, Contract Duration and Price. Performance parameters; Delays, penalties and liquidated damages; Force Majeure, Suspension and Termination. Changes & variations, Dispute Resolution methods. Classification of costs, time cost, trade-off in construction projects, compression and decompression.

L	Т	Р	Total
30	15	0	45

TEXT BOOKS

- 1. Kumar NeerajJha, "Construction Project management", Dorling Kindersley, Publishers, New Delhi.2013.
- 2. Chitkara.K.K, "Construction Project Management planning, Scheduling and control", Tata McGraw Hill Publishing Company, New Delhi, 2010.
- 3. National Building Code, Bureau of Indian Standards, New Delhi, 2017.

REFERENCES

- 1. Punmia, B.C., Khandelwal, K.K., "Project Planning with PERT and CPM", Laxmi Publications, 2016.
- 2. Vohra.N.D., "Quantitative Techniques in Management", Tata McGraw Hill Publishing Company, New Delhi, 2010.
- 3. Joy.P.K, "Total Project Management", Macmillan India Ltd, New Delhi, 2000.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
CO1				1	3	2	1	1	1					1
CO2	2	1						2	1	1		1	1	1
CO3	2	1		2		1	1	1	2		1		1	
CO4						2	1	1	1	1			1	
CO5			2				1							
Total Values	4	2	2	3	3	5	4	5	5	2	1	1	3	2
Scaled Value	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Note:

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Semester Course C			IV PCE405										
Course N	lame	:	CONSTRU	CTION MA	ANAGI	EMENT	LAB						
Prerequi	site	:	Nil										
L	T P	C		С	Р	Α			L	Т	Р	Н	
0	0 2	2		3	0	0			0	0	2	2	
	Course Outcome: After the completion of the course, students will Domain C Level be able to or P or A												
CO1	Plan and Schedule of a construction project using Psychomotor Guided Response MS PROJECT									esponse			
CO2	Plan a PRIMA		chedule of RA	a construc	ction p	roject ı	ising	Psycho	moto	r	Guid	led Re	esponse
CO3	3 Draw a Gantt Chart for managing dependencies between Psychomotor Guided Response												

EXPERIMENTS

task

30 Hrs.

- 1. Preparation of Planning and Scheduling by using MS PROJECT scheduling for a small construction project Allocation of resource- Tracking of a Project-Cost analysis- Reports preparation.
- 2. Preparation of Planning and Scheduling by using PRIMAVERA scheduling for a small construction project Allocation of resource- Tracking of a Project-Cost analysis- Reports preparation.
- 3. Prepare a schedule for the construction of Residential building using MS-Project.
- 4. Prepare a schedule for the construction of Residential building using PRIMAVERA.

TEXT BOOKS

- 1. Paulson. B.R., Computer Applications in Construction, McGraw Hill, 2005.
- 2. Feigenbaum .L, Construction Scheduling with Primavera Project Planner, 2009

REFERENCES

- 1. Krishnamoorthy .C.S and Rajeev .S, Computer Aided Design, Narosa publishing house, New Delhi, 2001.
- 2. Harrison .H .B, Structural Analysis and Design, vol. I & amp; II, Pergamon press, 2001
- 3. Feigenbaum .L, Construction Scheduling with Primavera Project Planner, Prentice Hall Inc., 2009.

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1				1	3		1		1					1
CO 2	2	1							1	1		1	1	1
CO 3	2	1		2			1		2		1		1	
Total	4	2	2	3	3		4		5	2	1	1	3	2
Scaled Value	1	1	1	1	1		1		1	1	1	1	1	1

Note:

e:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	r	:	: V									
Cou	ırse (Code	:	e P	CE501								
Сот	ırse I	Name	:	: D	ESIGN OF ST	TEEL ST	FRUCT	URES					
Pre	requ	isite	:	: N	IECHANICS (OF SOL	IDS						
	L	Т	Р	С		С	Р	Α	L	Т	Р	H	
	3	1	0	4		2	1	0	3	2	0	5	1

Course Objectives

To understand the provisions of IS800-2007 code of practice for the design of structural members using various connections and cross-sections.

To study the behavior and design of compression, tension members and flexural members using simple and built-up sections.

To study the design of bolted and welded connections.

Course be able	e Outcome: After the completion of the course, students will e to	Domain C or P or A	Level
CO1	Design of structural connections	Cognitive	Understand
CO2	Design of tension	Cognitive & Affective	Analyse & Apply
CO3	Design of compression members	Cognitive	Understand
CO4	Understand fabrication of plate girders and gantry girders	Cognitive	Understand
CO5	Design of structural elements of Industrial Structures.	Cognitive	Understand

COURSE CONTENT

UNIT I **CONNECTIONS**

Properties of steel – Structural steel sections – Limit State Design Concepts – Loads on Structures - Metal joining methods using welding, bolting - Design of bolted and welded joints - Eccentric connections - Efficiency of joints - High Tension bolts

UNIT II TENSION MEMBERS

Types of sections - Net area - Net effective sections for Angles and Tee - Design of connections in tension members – Use of lug angles – Design of tension splice – Concept of shear lag

UNIT III COMPRESSION MEMBERS

Types of compression members – Theory of columns – Basis of current codal provision for compression member design - Slenderness ratio - Design of single section and compound section compression members - Design of lacing and battening type columns - Design of column bases - Gusseted base

UNIT IV **BEAMS**

Design of laterally supported and unsupported beams – Built up beams – Beams subjected to biaxial bending – Design of plate girders– Intermediate and bearing stiffeners – Web splices – Design of beam columns

UNIT V TRUSSES AND INDUSTRIAL STRUCTURES

Roof trusses - Roof and side coverings - Design loads - Design of purlin and elements of truss- Design of gantry girder

9

9

9

T	L
15	45

- 1. N.Subramaniayan, "Design of Steel Structures: Theory and Practice", Oxford University Press, 2010.
- 2. S.S Bhavikatti, "Design of Steel Structures", I.K International Publishing Houses Pvt. Ltd, 2012.
- 3. Ramachandra S., "Design of Steel Structures Vol. I & II", Standard Publication, New Delhi,2010

REFERENCE BOOKS

- Duggal S.K., "Limit state Design of Steel Structures", 2nd edition, Tata McGraw Hill Education, 2014
- 2. Dayaratnam, P., "Design of Steel Structures", A.H.Wheeler& Co. Ltd., Allahabad, 2008
- 3. Jack C. McCormac , Stephen F.Csernak , "Structural Steel Design" Prentice Hall, Jul 2011

IS Codes

- 1. IS 800 -2007, General Construction in Steel, Code of Practice.
- 2. SP6-1: ISI Hand Book of Structural Engineers, Part -I

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	1	3	2			1	1	1				2	
CO 2	2	1	3	2			1		1				2	
CO 3	1	1	3	1		1							1	
CO 4	3	1	3	3	1	1							2	
CO 5	2	1	2	1		1							2	
Total	10	5	15	9	1	3	2	1	2				9	
Scaled Value	2	1	3	2	1	1	1	1	1				2	

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

a															
Sem	leste	r		: V											
Cou	rse	Code		:											
Cou	rse l	Name	!	: E	NVIRONM	ENTAL S	TUDIE	S							
Pre	requ	isite		:											
	L	Т	Р	C		С	Р	Α			L	Т	Р	Н	
	0	0	0	0		2.5	0	0.5			2	0	0	2	
Cou	rse (Outco	me: 1	After	the complete	ion of the d	course,	students	will	Dom	ain			Level	
be a	be able to C or P or A														
CO	O1 <i>Describe</i> the significance of natural resources and <i>explain</i> Cognitive Remembering and understanding														
CO	I	<i>Illustrate</i> the significance of ecosystem, biodiversity and Cognitive Understanding natural geo bio chemical cycles for maintaining ecological balance.													
CO.		<i>Identify</i> the facts, consequences, preventive measures of Cognitive Remembering major pollutions and <i>recognize</i> the disaster phenomenon Affecting Receiving													
CO4	t	-	ontro	ol me	io-economic asures of			-		Cogniti	ve			tandii nalyse	U
CO	5 1	Recog	nize	the	impact of	populatio	on and	apply	the	Cogniti	ve	U	nders	tandir	ıg

And Apply

COURSE CONTENT

UNIT I INTRODUCTION TO ENVIRONMENTAL STUDIES AND RESOURCES

Environmental ethics towards environmental protection.

Definition, scope and importance – Need for public awareness – Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people – Water resources: Use and over-utilization of surface and ground water, flood, drought, conflicts over water, dams-benefits and problems – Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies – Food resources: World food problems, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies – Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies – Land resources: Land as a resource, land degradation, man induced landslides, soil erosion and desertification – Role of an individual in conservation of natural resources – Equitable use of resources for sustainable lifestyles.

UNIT II ECOSYSTEMS AND BIODIVERSITY

Concept of an ecosystem – Structure and function of an ecosystem – Producers, consumers and decomposers – Energy flow in the ecosystem – Ecological succession – Food chains, food webs and ecological pyramids – Introduction, types, characteristic features, structure and function of the (a) Forest ecosystem (b) Grassland ecosystem (c) Desert ecosystem (d) Aquatic ecosystem (ponds, streams, lakes, rivers, oceans, estuaries) – Introduction to Biodiversity – Definition: genetic, species and ecosystem diversity - Biodiversity patterns and global biodiversity hot spots. India as a mega-biodiversity nation; Endangered and endemic species of India Threats to biodiversity : Habitat loss, poaching of wildlife, man---wildlife conflicts, biological invasions; Conservation of biodiversity: In-situ and Ex-situ conservation of biodiversity.

12

UNIT III ENVIRONMENTAL POLLUTION

Definition – Causes, effects and control measures of: (a) Air pollution (b) Water pollution (c) Soil pollution (d) Marine pollution (e) Noise pollution (f) Thermal pollution (g) Nuclear hazards – Solid waste management: Causes, effects and control measures of urban and industrial wastes – Role of an individual in prevention of pollution – Pollution case studies – Disaster management: flood, earthquake, cyclone and landslide.

UNIT IV SOCIAL ISSUES AND THE ENVIRONMENT

Urban problems related to energy – Water conservation, rain water harvesting, watershed management – Resettlement and rehabilitation of people; its problems and concerns, climate change, global warming, acid rain, ozone layer depletion, nuclear accidents and holocaust, Wasteland reclamation – Consumerism and waste products – Environment Protection Act – Air (Prevention and Control of Pollution) Act – Water (Prevention and control of Pollution) Act – Wildlife Protection Act – Forest Conservation Act – International agreements: Montreal and Kyoto protocols and Convention on Biological Diversity (CBD).Nature reserves, tribal populations and rights, and human wildlife conflicts in Indian context. Issues involved in enforcement of environmental legislation – Public awareness.

UNIT V HUMAN POPULATION AND THE ENVIRONMENT

Human population growth: Impacts on environment, human health and welfare. Resettlement and rehabilitation of project affected persons; case studies. Environmental movements : Chipko, Silent valley, Bishnois of Rajasthan. Environmental ethics: Role of Indian and other religions and cultures in environmental conservation. Environmental communication and public awareness, case studies (e.g., CNG vehicles in Delhi).

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Mahua Basu, S. Xavier, Fundamentals of Environmental Studies, Cambridge University Press, 2019
- 2. Bharucha Erach, Textbook of Environmental Studies for Undergraduate Courses, Orient Blackswan Pvt Ltd, 2018
- 3. Anubha Kaushik, C.P. Kaushik, Perspectives in Environmental Studies, New Age International Pvt Ltd Publishers, 2018
- 4. Divan Shyam, Environmental Law and Policy in India, OUP India, 2019
- 5. Varun Dutt Sharma, S.K. Pandey, Vimal Kumar sharma, Environmental Education and Disaster Management, CBS Publishers & Distributors, 2019

REFERENCE BOOKS

- 1. M.V. Subba Rao, Natural Resources, Conservation, Management and Health Care, Discovery Publishing Pvt.Ltd,2020
- 2. Masters Gilbert M. Introduction to Environmental Engineering 3rd Edition, Pearson Education India, 3rd edition, 2015.
- 3. P.D. Sharma, Ecology and Environment Thirteenth Edition, Rastogi Publications, 2017
- Dr. Avneesh Gaur, Environmental Engineering and Disaster Management, Vayu Education Of India,2021

9

E-REFERENCES

- 1. http://www.e-booksdirectory.com/details.php?ebook=10526
- 2. https://www.free-ebooks.net/ebook/Introduction-to-Environmental-Science
- 3. https://www.free-ebooks.net/ebook/What-is-Biodiversity
- 4. https://www.learner.org/courses/envsci/unit/unit_vis.php?unit=4
- 5. http://bookboon.com/en/pollution-prevention-and-control-ebook
- 6. http://www.e-booksdirectory.com/details.php?ebook=8557
- 7. http://www.e-booksdirectory.com/details.php?ebook=6804
- 8. http://bookboon.com/en/atmospheric-pollution-ebook
- 9. http://www.e-booksdirectory.com/details.php?ebook=3749
- 10. http://www.e-booksdirectory.com/details.php?ebook=2604
- 11. http://www.e-booksdirectory.com/details.php?ebook=2116
- 12. http://www.e-booksdirectory.com/details.php?ebook=1026
- 13. http://www.faadooengineers.com/threads/7894-Environmental-Science

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
CO1														
CO2	2					2	1			1		1		
CO3	2	1	3			3	1		2	1		1		
CO4	1	1	2			3	2	3				1		
CO5	2	1	1			3						1		
Total	10	3	6			11	4	3	2	2		5		
Scaled Value	2	1	2			3	1	1	1	1	1	1		

Mapping of CO's with PO's:

Note:

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Sen	ieste	r	:	: V									
Cou	irse	Code	:	: P	CE504								
Сот	irse	Name	e :	: C	OMPUTER A	IDED I	DESIGN	N & DR	AFTING				
Pre	rear	isite		: C	OMPUTER A	IDFD (TVIL I	INCINE	FRING D	RAWIN	G		
110	rcqu		•	. C							U	T	
	L	Т	Р	C		С	Р	Α		L	Т	Р	Н
	0	0	2	2		0	3	0		0	0	3	3
Cou to	Course Outcome: After the completion of the course, students will be able to C or P or A Level												
CO					appropriate		•	tem fo	r a	Psycho	motor	Resp	oond
CO				-	oreliminary des ensions	igns of	structur	es assur	ning	Psycho	notor	Resp	oond
CO	•		etainii	ng wa	ments of reinfo Ills, water tanks			U		Psychol	motor	Resp	oond
CO	4	Under	stand	l fabri	cation of plate	girders	and gan	try girde	ers	Psychon	notor	Resp	oond
CO	5	Desig	n of s	tructu	aral elements of	f Industr	ial Struc	ctures.		Psychon	notor	Resp	oond

COURSE CONTENT

Detailed design and drawing of the following reinforced concrete structures and steel structures using software packages like Auto CAD /Revit and Staad Pro / Etabs.

- 1. Design of Raft and Pile with pile cap (Four Piles only) Foundations and reinforcement details.
- 2. Design and Drawing of RCC cantilever and counterfort type retaining walls with reinforcement details.
- 3. Detailing and Drafting of Solid slab and RCC Tee beam bridges for IRC loading and reinforcement details.
- 4. Design and Drawing of staircase.
- 5. Detailing and Drafting of Circular and Rectangular Water Tank .
- 6. Design of plate girder bridge Detailed Drawings including connections.
- 7. Design of Gantry girder– Detailed Drawings including connections.
- 8. Design of Roof Truss Detailed Drawings including Connections.

	L	Т	Р	Total
	0	0	30	30
TEXT BOOKS				

1. Krishna Raju, N., "Design of Reinforced Concrete Structures", CBS Publishers & Distributors, New Delhi, 2007.

2. Devadas Menon & Unnikrishnan Pillai, Reinforced Concrete Design, Tata McGraw-Hill Publishing Company Ltd., New Delhi 2011

3. Ramachandra S., "Design of Steel Structures - Vol. I & II", Standard Publication, New Delhi, 2010

REFERENCE BOOKS

- 1. Dr.P.Purushothaman, Reinforced Concrete Structures, Oxford Publication (P) Ltd, Delhi, 2007.
- 2. Krishnamurthy, D., "Structural Design & Drawing Vol. II", CBS Publishers & Distributors.
- 3. Duggal S.K., "Limit state Design of Steel Structures", 2nd edition, Tata McGraw Hill, 2014.

IS CODES:

- 1. IS 456 -2000, Plain and Reinforced Concrete Code of Practice, 4th revision
- 2.SP16-1980, SP6 1 : ISI Hand Book of Structural Engineers, Part -I
- 3. IS 800 -2007, General Construction in Steel, Code of Practice.

Mapping of CO with PO's

	P01	P02	P03	P04	P05	P06	P07	PO8	P09	P010	P011	P012	PSO 1	PSO2
CO1	3		1										2	
CO2	2	3		1		1	1						3	1
CO3	1	1	3	1		1	1	1			1		1	
CO4	1	1	3	1		1							1	
CO5	3	1	3	3	1	1							2	
Total	10	6	10	6	1	4	2	1	1		1		9	1
Scaled Value	2	2	2	2	1	1	1	1	1		1		2	1

1 - Low, 2 - Medium, 3 - High

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester	:	V									
Course Code	:	PCE505									
Course Name	:	ESTIMATION	I, COST	ING AN	ND VAL	LUATION					
Prerequisite	:	Nil									
L T P	, (С	C	Р	Α		L	Т	Р	Н	

3

0

Course Outcome: After the completion of the course, students will be ab	ole
to	

0

- CO1 Draw center line marking in the field as per the plan
- **CO2** Estimate the quantities of items and labour requirements of Civil Engineering works.
- **CO3** Prepare the abstract and detailed estimate of any construction project

EXPERIMENTS

0

0

2

2

- 1. Building marking
- 2. Detailed Estimate of Residential buildings (RCC and Masonry)
- 3. Detailed Estimate of Water supply & Sanitary work
- 4. Detailed Estimate of Culverts and Bridges
- 5. Detailed Estimate of Earthwork for Roads
- 6. Detailed Estimate of Steel Roof Trusses
- 7. Preparation of Bar bending schedule
- 8. Rate Analysis of Different Items for Construction work
- 9. Preparation of valuation report in standard Government form
- 10. Estimation using Spread Sheet

TEXT BOOKS

- 1. Dutta, B.N., "Estimating and Costing in Civil Engineering Theory and Practice", UBS Publishers & Distributors Pvt. Ltd., New Delhi, 2010.
- 2. Kohli, D.D and Kohli, R.C., "A Text Book of Estimating and Costing (Civil)", S.Chand& Company Ltd., New Delhi, 2004
- 3. M.Chakraborty,"Estimating, Costing, Specification and Valuation in Civil Engineering", Kolkata, 1997.

30 Hrs.

0

Domain

C or P or A

Psychomotor

Psychomotor

Psychomotor

0

2

Guide Response

Guide

Guide

Response

Response

2

Level

REFERENCE BOOKS

- 1. Aggarwal, A., Upadhyay, A.K., Civil Estimating, Costing &Valuation, S.K Kataria& Sons, New Delhi.
- 2. Birdie.G.S., "A Text Book on Estimating and Costing", DhanpatRai and Sons, New Delhi
- 3. Chandola, S.P. and Vazirani, Estimating and Costing, Khanna Publication
- 4. Rangwala. S.C., "Elements of Estimating and Costing", Charotar Publishing House, Anand
- 5. IS 1200-1974, Parts 1-25, Methods of Measurements of Building and Civil Engineering works Bureau of Indian Standards, New Delhi.
- 6. Standard Data Books and Schedule of rates of Central and State Public Works Departments

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	1		1	2		1	1			1	1		
CO 2	2	1		1			1				1	1		
CO 3	2	1	2	1			1				2	1	1	
Total	6	3	2	3	2		3	1			4	3	1	
Scaled Value	2	1	1	1	1		1	1			1	1	1	

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Sen	neste	r		: V	/I								
Cou	ırse (Code		: P	PCE601								
Сот	irse I	Name	e	: F	TINITE ELEM	ENT M	ETHOI)					
Pre	requ	isite		: S	TRUCTURAI	L ANAL	YSIS						
	L	Т	Р	С]	С	Р	Α	L	Т	Р	Н	
	3	1	0	4		2.5	0	0.5	3	2	0	5	

Course be able	<i>Outcome: After the completion of the course, students will to</i>	Domain C or P or A	Level
CO1	Gain knowledge on basic concepts of FEM	Cognitive	Understand
CO2	Determine stresses and displacements for one and two dimensional elements under various loading.	Cognitive	Understand
CO3	Analyse the higher order elements using Isoparametric mapping and numerical integration.	Cognitive	Analyse
CO4	Identify and Apply concepts of FEM in fluid mechanics.	Cognitive	Apply

COURSE CONTENT

UNIT I	INTRODUCTION – VARIATIONAL FORMULATION 12
	Methods of Engineering analysis – Basic concept of FEM and its procedure- Advantages and Disadvantages - Weighted Residual Method – Principle of Stationary Total Potential – Rayleigh Ritz method.
UNIT II	ONE DIMENSIONAL FINITE ELEMENT ANALYSIS 12
	Finite element: modelling, coordinates, shape functions, stiffness matrix, stiffness equation, finite element equation for one dimensional element. Load or force vector – Temperature effects.
UNIT III	TWO DIMENSIONAL FINITE ELEMENT ANALYSIS12
	Finite element modelling, coordinates, shape functions, stiffness matrix, stiffness equation, finite element equation for two dimensional elements. Plane stress and plane strain – Constant Strain Triangular element – Linear Strain Triangular elements – Temperature effects.
UNIT IV	ISOPARAMETRIC ELEMENTS AND FORMULATION 12
	Shape function for 4 noded elements using natural coordinate system and transformation – element stiffness matrix equations –Higher order two dimensional element – Shape function derivation for rectangular and triangular element – Lagrangean and Serendipity elements.
UNIT V	APPLICATIONS TO FIELD PROBLEMS IN TWO DIMENSION12
	Heat Transfer - Application to Heat Transfer in two dimensions - Application to Fluid

Mechanics in two dimensions.

	L	Т	Р	Т	
	45	15	0	60	
TEXT BOOKS					

- 1. Krishnamoorthy, C.S., "Finite Element Analysis Theory and Programming", Second Edition, TataMcGraw Hill, 2015.
- 2. Bhavikati , S.S., "Finite Element Analysis", New Age International Publishjers , 2016.
- 3. S.S.Rao, "The Finite Element Method in Engineering", Pergaman Press, 2011.

REFERENCES

- 1. J.N.Reddy, "An Introduction to Finite Element Method", McGraw-Hill, Intl.Student
- 2. Edition, 2013.
- 3. Chandrupatla, T.R., and Belegundu, A.D., "Introduction to Finite Element in Engineering", Third Edition, Prentice Hall, India, 2012.
- 4. O. C. Zienkiewicz, Robert Leroy Taylor, PerumalNithiarasu, "The Finite Element Method for Fluid Dynamics", Butterworth-Heinemann, 2013.

	P01	P02	P03	PO4	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
C01	1	3	2			1							1	1
CO1	2	2	3	1		1							1	1
CO3	3	1	1	1		2				2		1	1	1
CO4	3	2	1		1	1	1	1	1	1	1			
Total	9	8	7	2	1	5	1	1	1	3	1	1	3	2
Scaled Value	2	2	2	1	1	1	1	1	1	1	1	1	1	1

Mapping of CO's with PO's:

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

PROFESSIONAL ELECTIVE

Semester

Course Code : PCEE01

:

:

Course Name : Smart Structures and Materials

Prerequisite

L	Т	Р	С	С	Р	А	L	Т	Р	Η
3	0	0	3	3	0	0	3	0	0	3

Course Outcome: After the completion of the course, students will be able to

CO1 Study about the smart materials and its characteristics

- **CO2** Evaluate the measurement techniques for strain
- CO3 Design of sensors using smart materials
- CO4 Design of actuators using smart materials

CO5 Energy harvesting using piezoelectric materials

COURSE CONTENT

UNIT I INTRODUCTION

Introduction to Smart Materials and Structures – Instrumented structures functions and response –Sensing systems – Self diagnosis – Signal processing consideration – Actuation systems and effectors.

UNIT II MEASURING TECHNIQUES

Strain Measuring Techniques using Electrical strain gauges, Types – Resistance – Capacitance – Inductance – Wheatstone bridges – Pressure transducers – Load cells – Temperature Compensation – Strain Rosettes.

UNIT III SENSORS

Sensing Technology – Types of Sensors – Chemical and Bio-Chemical sensing in structural Assessment – Absorptive chemical sensors – Spectroscopes – Fibre Optic Chemical Sensing Systems and Distributed measurement.

UNIT IV ACTUATORS

Actuator Techniques – Actuator and actuator materials – Piezoelectric and Electrostrictive Material – Magneto structure Material – Shape Memory Alloys – Electro orheological Fluids– Electro magnetic actuation – Role of actuators and Actuator Materials.

UNIT V ADVANCES IN SMART STRUCTURES & MATERIALS

Self-Sensing Piezoelectric Transducers, Energy Harvesting Materials, Autophagous Materials, Self-Healing Polymers, Intelligent System Design, Emergent System Design

L	Т	Р	Total
45	0	0	45

66

9

Level

Understand

Understand

Understand

Understand

Understand

Domain

C or P or A

Cognitive

Cognitive

Cognitive

Cognitive

Cognitive

9

9

9

TEXT BOOKS

- 1. Brain Culshaw Smart Structure and Materials Artech House Borton. London.
- 2. Smart Materials and Structures/ M. V. Gandhi and B.So Thompson/ Chapman & Hall, London; New York.
- 3. Gauenzi, P., Smart Structures, Wiley, 2009
- 4. Michelle Addington and Daniel L. Schodek, "Smart Materials and Technologies: For the Architecture and Design Professions", Routledge 2004.

REFERENCE BOOKS

- 1. Electro ceramics: Materials, Properties/ A.J. Moulson and J.M-Herbert/ Wiley/ 2nd Edition, (ISBN: 0471497479).
- 2. Piezoelectric Sensories: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors. Materials and Amplifiers/ G. Gautschi/ Springer, Berlin; New York, 2002 (ISBN:3540422595)
- 3. L. S. Srinath, "Experimental Stress Analysis", Tata McGraw-Hill, 1998

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	3		1	3						2		2	
CO 2	1	3				2					2		2	
CO 3	1	2	2	1			1	1			2		1	
CO 4	1	2	2	1			1	1			2		1	
CO 5	1	2												
Total	6	12	4	3	3	2	2	2			8		6	
Scaled Value	2	3	1	1	1	1	1	1			2		2	

Mapping of CO with PO's

Note:

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Semester

Course Code : PCEE02

:

Course Name : GIS for Civil Engineering

Prerequisite : Nil

L	Т	Р	С	С	Р	А	L	Т	Р	Н	
3	0	0	3	1.5	1.0	0.5	3	0	0	3	

Course Objectives

- To understand the basic concepts of remote sensing
- To know the applications of Geographic information systems in Civil Engineering
- To identify the basic remote sensing concepts and its characteristics
- To implement the photogrammetry concepts and fundamentals of Air photo interpretation
- To use various analysis and interpretation of GIS results

Course be able	<i>Outcome: After the completion of the course, students will to</i>	Domain C or P or A	Level
CO1	<i>Explain</i> about the fundamentals of remote sensing	Cognitive Affective	Remembering Respond & Observation
CO2	<i>Facilitating</i> complex querying and analysis	Cognitive Affective	Analyzing Observation
CO3	<i>Maximizing</i> the efficiency of planning and decision making	Cognitive, Affective Psychomotor	Application Respond to Phenomena Manipulation
CO4	<i>Integrating</i> information from multiple sources	Cognitive Affective Psychomotor	Understanding Manipulation Apply
CO5	<i>Eliminating</i> redundant data and minimizing duplication and apply in civil engineering field	Cognitive Psychomotor	Remembering Observation

COURSE CONTENT

UNIT I INTRODUCTION TO REMOTE SENSING

Definition of remote sensing and its components – Electromagnetic spectrum – wavelength regions important to remote sensing – Wave theory - Atmospheric scattering, absorption – Atmospheric windows – spectral signature concepts - Types of platforms and sensors - Passive and Active sensors – resolution concept - Image interpretation – Image processing

UNIT II INTRODUCTION TO GIS AND MAPS

History of GIS, Early Developments in GIS, Applications of GIS, Components of a GIS - Introduction – Maps and Globe – Types of map – Map scale - standard GIS software

11

UNIT III GEOREFERENCING AND MAP PROJECTION

Understanding Earth – Georeferencing – Transformation – Coordinate System - Map projections – types of map projections – map analysis

UNIT IV GIS – DATA ENTRY, STORAGE AND ANALYSIS

Spatial Database Management System – Data storage - Data Structure models – Vector and raster data – data compression – data input by digitization and scanning, data storage – attribute data analysis – integrated data analysis – Data interpolation - mapping concept - development of map overlay, overlay operation – Errors and quality control.

UNIT V APPLICTIONS OF GIS IN CIVIL ENGINEERING

Web GIS - Modeling in GIS Highway alignment studies – Land Information System -Terrain Mapping and Analysis - Watershed Analysis - Environmental Engineering & Impact Studies - Wastewater and Stormwater Management - Disaster Management -Structural Engineering – Soil Mapping

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Shahab Fazal, , (2015), G I S Basics, New Age International Publications, Chennai
- 2. Burrough P.A. (2000), Principle of Geographical Information Systems for land resources assessment, Clarendon Press, Oxford.
- 3. Anji Reddy.M. (1998), Remote Sensing and Geographical information systems.

REFERENCE BOOKS

- 1. Lo & Yeung (2005), Geographic Information Systems, Prentice of India.
- 2. Lillesand, T.M. & Kiefer R.W. (1998), Remote Sensing and image interpretation, John Wiley & Sons, Newyork.
- 3. Clarke Parks & Crane (2005), Geographic Information Systems & Environmental Modelling, Prentice-Hall of India.
- 4. Wolf Paul (1998), Elements of Photogrammetry, McGraw Hill, New Delhi.
- 5. Goodchild, M.F., Longley, P.A., Maguire, D. J. & Rhind, D.W 2001, *Geographic information systems and science*, John Wiley & Sons Ltd., England.

E-REFERENCES

- 1. https://nptel.ac.in/courses/105/102/105102015/
- 2. http://webhelp.esri.com/arcgisserver/9.3/java//index.htm#wms_service.htm

6

10

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	9 O 4	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	3	1	1	1		1		2		1		1	2	1
CO 2	1	2	1			2		2		1		1	2	2
CO 3	3	1	1	1		1		2		1	1	1	2	1
CO 4	2	2	1	1	1	2		1		1	1	1	2	2
CO 5	1	3	1	1	1	1	2	2	3	1	1	1	1	1
Total	10	9	5	4	2	7	2	9	3	5	3	5	9	7
Scaled Value														

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semest	er	:	:										
Course	Code	:	P	CEE03									
Course Prereq				VATER QUA nvironmenta			ERING						
L	Т	P	С		С	Р	A		L	Т	Р	Н	
3	0	0	3		2	0	1		3	0	0	3	
Course	-	-]		Ŭ		J		J	0	0	

- To understand the significance of Physio-chemical treatment for water and wastewater
- To recognize the principles of Physical treatment
- To acquire knowledge on Chemical Treatment
- To apply the principles of treatment methodologies and to design the Municipal water treatment plants

Course be able	Outcome: After the completion of the course, students will to	Domain C or P or A	Level
CO1	<i>Understand</i> the significance of Physio-chemical treatment for water and wastewater	Cognitive	Understand
CO2	Recognize the principles of Physical treatment	Cognitive	Understand
CO3	Acquire knowledge on Chemical Treatment	Cognitive Affective	Understand Respond
CO4	<i>Apply</i> the principles of treatment methodologies and to design the Municipal water treatment plants	Cognitive Affective	Create Respond
CO5	Apply the principles and to design the Industrial water treatment units	Cognitive Affective	Create Respond

COURSE CONTENT

– Recent Trends

UNIT I	POLLUTANTS IN WATER AND WASTE WATER9
	Characteristics, Standards for performance - Significance of physico-chemical treatment – Selection criteria-types of reactor- reactor selection-batch-continuous type
UNIT II	PRINCIPLES OF PHYSICAL TREAMENT 9
	Screening – Mixing, Equalization – Sedimentation – Filtration – Evaporation – Incineration – gas transfer – mass transfer coefficient Adsorption –Membrane separation, Reverse Osmosis, nano filtration, ultra filtration and hyper filtration
UNIT III	PRINCIPLES OF CHEMICAL TREATMENT 9
UNITIII	PRINCIPLES OF CHEMICAL TREATMENT 9 Coagulation flocculation – Precipitation – flotation solidification and stabilization – Disinfection, Ion exchange, Electrolytic methods, advanced oxidation /reduction – Recent Trends
UNIT III UNIT IV	Coagulation flocculation – Precipitation – flotation solidification and stabilization – Disinfection, Ion exchange, Electrolytic methods, advanced oxidation /reduction – Recent

UNIT V DESIGN OF INDUSTRIAL WATER TREATMENT PLANTS

Design of Industrial Water Treatment Units- Selection of process – Design of softeners – Demineralisers –Reverse osmosis plants –Flow charts – Layouts –O&M aspects – case studies, Residue management – Upgradation of existing plants – Recent Trends.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Rakesh Kumar and R.N. Singh,"Municipal Water and Wastewater Treatment" TERI publishers,2012
- 2. Gurucharan Singh," Water supply and Sanitary Engineering", Standard Publishers Distributors, 2009
- 3. Garg, S.K., "Environmental Engineering I & II", Khanna Publishers, New Delhi 2007
- 4. LinvilG.Rich, Unit operations of Sanitary Engineering, Tata Mcgraw Hill, New Delhi, 2007
- 5. Rangwala, "Water Supply and Sanitary Engineering PB,24/e, Charotar Publishing house Pvt. Ltd.-Anand, 2011

REFERENCE BOOKS

- 1. Metcalf and Eddy, "Wastewater Engineering, Treatment and Reuse", Tata McGraw Hill, New Delhi, 2003.
- 2. Qasim, S.R., Motley, E.M. and Zhu.G. "Water works Engineering Planning, Design and Operation", Prentice Hall, New Delhi, 2002. 7
- 3. Lee, C.C. and Shun dar Lin, "Handbook of Environmental Engineering Calculations", McGraw Hill, New York, 1999.
- 4. F.R. Spellman, "Hand Book of Water and Wastewater Treatment Plant operations", CRC Press, New York (2009).
- 5. David Hendricks, "Fundamentals of Water Treatment Process", CRC Press New York (2011)

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1		1	1	1	1	1			1				1	
CO 2		1	2	1	1	1			2				2	1
CO 3	1		3	2			1		1	1	1		2	
CO 4	1	1	1	1			1	1	2			1	1	
CO 5			2	2				1	1	1		2	1	
Total	2	3	9	7	2	2	2	2	7	2	1	3	7	1
Scaled Value	1	1	2	2	1	1	1	1	2	1	1	1	2	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Cou Cou	nester urse C urse N requis	ode ame	:	F F	PCEE PAVE NIL	04 MENT	ГDI	ESIG	N										_
	L	Т	Р	C				С		Р	A				L	Т	Р	Н	-
	3	0	0	3				2		0	1				3	0	0	3	
Cou	rse O	bjec	tives																
Thre	ough t	his c	ourse	e the	stude	nts will	1												
•	To ga	in the	e kno	wlec	lge on	compo	onen	ts of	hig	hway	and ai	irpo	ort pav	vements					
•	To stu	ıdy tł	ne loa	ad an	d stre	ss due	to tr	affic	load	ds									
•	To de	sign	the fl	exib	le pav	ements	s												
•	To de	sign	the ri	igid p	pavem	ents													
•	To lea	arn m	ainte	enanc	e and	repair	on t	oitum	inou	us and	conci	rete	e layei	rs					
•	To ga	in the	e kno	wled	lge on	compo	onen	ts of	hig	hway	and ai	irpo	ort pav	vements					
	rse O ble to		ne: A	After	the c	omplet	tion	of the	e ca	ourse,	stude	ents	will		main P or J	A		Lev	el
CO		Jndei aven			e co	mpone	ents	of	higl	hway	and	ai	rport	Cognit	ive		Unde	erstan	ding
CO		Jtiliz lesigr		ntifie	ed trat	fic fac	ctors	effic	eient	tly in t	the pa	avei	ment	Cognit	ive		Unde	erstan	ding
CO.	3 (Optin	nally	desig	gn of f	lexible	e pav	vemer	nts					Cognit			Unde	erstan	ding

		111000110	Respond
CO4	Optimally design of rigid pavements	Cognitive Affective	Understanding Respond
CO5	Assess pavement performance and suggest rectification options.	Cognitive	Understanding

COURSE CONTENT

INTRODUCTION UNIT I

Types and component parts of pavements, Factors affecting design and performance of pavements. Highway and airport pavements. Stresses and Deflections. Stresses and deflections in homogeneous masses. Burmister's two layer theory, three layer and multi-layer theories:

UNIT II TRAFFIC FACTORS IN PAVEMENT DESIGN

Wheel load stresses, various factors in traffic wheel loads; ESWL of multiple wheels. Repeated loads and EWL factors; sustained loads. Pavement behaviour under transient traffic loads.

UNIT III FLEXIBLE PAVEMENT DESIGN METHODS FOR HIGHWAYS AND 9 **AIRPORTS**

Empirical, semi-empirical and theoretical approaches, development, principle, design steps, advantages; design of flexible pavements as per IRC; Stresses in Rigid Pavements: Types of stresses and causes, factors influencing the stresses; general considerations in rigid pavement analysis, EWL; wheel load stresses, warping stresses, frictional stresses, combined stresses.

9

9

Affective Respond

UNIT IV RIGID PAVEMENT DESIGN

Types of joints in cement concrete pavements and their functions, joint spacings; design of CC pavement for roads and runways as per IRC, design of joint details for longitudinal joints, contraction joints and expansion joints. IRC method of design by stress ratio method. Design of continuously reinforced concrete pavements

UNIT V PAVEMENT REHABILITATION

Maintenance, repair and rehabilitation of pavements including design of bituminous and concrete overlays as per IRC

L	Т	Р	Total	
45	0	0	45	

TEXT BOOKS

- 1. Yang H. Huang : Pavement Analysis and Design, prentice Hall; second edition, August 18, 2003.
- 2. T. Papagiannakis, E. A. Masad, Pavement Design and Materials, John Wiley & Sons, 2008.

REFERENCE BOOKS

- 1. S.K Khanna, C.E.G Justo, A Veeraragavan.Highway Engineering, Nem Chand and Brothers, 10th Edition, Roorkee, 2015.
- 2. Pavement design from AASHTO American Association of State Highway and Transportation Officials, 2010.
- 3. IRC-37–2001.Guidelines for the Design of Flexible Pavements, New Delhi, 2012.
- 4. IRC 58-2002. Guideline for the Design of Rigid Pavements for Highways, New Delhi, 2002

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	2	1	-	-	1	-								2
CO 2	2	1	-	-	1									2
CO 3	2	1	2	-	1									3
CO 4	3	2	2	1	1									3
CO 5	3	2	-	1	1									2
Total	12	7	4	2	5	0	0	0	0	0	0	0	0	12
Scaled Value	3	2	1	1	1	0	0	0	0	0	0	0	0	3

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

9

COURSE CODE	PCI	EE05							
COURSE NAME			UCTIO TION	EQUIPMENT	AND				
PREREQUISITES	NIL	ı							
	С	Р	А			L	Т	Р	С
	2	0	1			3	0	0	3
COUDSE OB JECTIV	/FS	•	<u> </u>					•	<u> </u>

COURSE OBJECTIVES

To enable the students familiarize with modern construction equipments.

To understand the equipment management methods and equipment functional operations.

To learn the applications of the equipment in construction projects.

COURS	E OUTCOMES	DOMAIN	LEVEL
At the er	nd of this course, the students should be able to		
CO1	Identify construction equipment appropriate to tasks	Cognitive	Understanding
CO2	Estimate equipment ownership and operating costs	Cognitive Affective	Understanding Responding
CO3	Estimate and schedule activities using equipment productivity and cost data	Cognitive Affective	Understanding Responding
CO4	Understand contemporary issues pertaining to construction methods, equipment usage and management.	Cognitive	Understanding
CO5	Recognize the concept of intelligent buildings	Cognitive	Understanding

COURSE CONTENT

UNIT I EQUIPMENT MANAGEMENT

Identification -- Planning - Equipment Management in Projects - Maintenance Management - Replacement - Cost Control of Equipment - Depreciation Analysis, Methods of calculation of depreciation-Safety Management.

UNIT II EARTHWORK EQUIPMENT

Fundamentals of Earth Work Operations - Earth Moving operations-Types of Earthwork Equipment - Tractors, Motor Graders, Scrapers, Front end Loaders, Earth Movers - capacity calculations.

UNIT III PUMPS USED IN CONSTRUCTION

Equipment for Dredging, Trenching, Tunnelling, Drilling and Blasting. Equipment for compaction - Types of pumps used in Construction - Equipment for Grouting - Pile Driving Equipment- Equipment of Erection and demolition

09

UNIT IV SCREENING EQUIPMENT

Crushers-Feeders-Screening Equipment-Batching and Mixing Equipment-Hauling equipment-Pouring and Pumping Equipment-Ready mixed concrete carriers.

UNIT V INTELLIGENT BUILDINGS & BUILDING MANAGEMENT SYSTEM

Concept-Purpose-Control Technologies- Automation Of All The Services And Equipment -Building Management Systems (BMS) -Energy Management Systems And Building controls.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Sharma S.C. "Construction Equipment and Management", Khanna Publishers, Delhi, 2008.
- 2. Peurifoy, R.L., Ledbetter, W.B. and Schexnayder.C, "Construction Planning Equipment and Methods", McGraw Hill. Singapore 2005.
- 3. William T.Mayer, " Energy Economics and Build Design ", McGraw Hill Book Co., 1983

REFERENCES

- 1. Deodhar, S.V. "Construction Equipment and Job Planning", Khanna Publishers Delhi, 2008.
- 2. Leonhard E.Bernold, "Construction Equipment and Methods", Wiley india Pvt. Ltd2005.
- 3. Mahesh Varma .Dr, "Construction Equipment and its planning and application", Metropolitan Book Company, New Delhi, 2003.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO 1				1				1		1				
CO 2	3	2			2	2			2	2	1	3	2	1
CO 3	3	2			2	2					1	3		
CO 4			1								3			
CO 5			1				2		2					2
Total	6	4	2	1	4	4	2	1	4	3	5	6	2	3
Scaled Values	2	1	1	1	1	1	1	1	1	1	1	2	1	1

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester

L 3

Course Code	:	PCEE06
--------------------	---	--------

Р

0

С

3

:

Course Name : AIRPORT PLANNING AND DESIGN

Prereq	uisite	:	NIL

Т

0

С	Р	Α
2	0.5	0.5

L	Т	Р	Η
3	0	0	3

Course Objectives

Through this course the students will

- To learn about the aircraft characteristics, planning and components of airport.
- To know about the airport pavement design and maintenance.
- To learn about the navigational aids of airports.

Course able to	Outcome: After the completion of the course, students will be	Domain C or P or A	Level
CO1	Gain an insight on the planning and site selection of Airport .	Cognitive	Understanding
CO2	Know about layout and passenger facility systems.	Cognitive Affective	Understanding Respond
CO3	Analyze and design the elements for orientation of runways.	CognitivePsych omotor	Understanding Mechanism
CO4	Design and maintain the pavements.	Cognitive Psychomotor	Understanding Mechanism
CO5	Understand the importance of navigational aids	Cognitive	Understanding

COURSE CONTENT

UNIT I INTRODUCTION

Introduction to air transport - Aircraft characteristics - Airport classification, Airport planning - Site selection- Airport obstructions and Zoning - Environmental guidelines for airport projects

UNIT II AIRPORT LAYOUT

Typical Airport Layouts - terminal area, apron, hangers, parking and circulation Area.

UNIT III GEOMETRIC DESIGN

Runway Design: Orientation, Wind Rose Diagram, Problems on basic and Actual Length, Geometric Design – Elements of Taxiway Design

UNIT IV AIRPORT PAVEMENTS

Design factors – design methods for flexible and rigid pavements- maintenance and rehabilitation of pavements-airport drainage.

UNIT V NAVIGATIONAL AIDS

Airport Markings and lighting –need of Air traffic control –air traffic control network – air traffic control aids .

L	Т	Total	
45	0	0	45

9

8

10

10

TEXT BOOKS

- 1. Khanna S.K., AroraM.G.& Jain S.S Airport Planning and Design, Nemchand and Bros, 2012.
- 2. Rangwala, "Airport Engineering", Charotar Publishing House, 2013.
- 3. Subash C Saxena, "Airport Engineering, Planning and Design" CBS Publishers & Distributors, 2015.

REFERENCE BOOKS

- 1. Niles A.S and Newell Airplane Structures Vol.II John Wiley and sons, New York
- 2. Environmental guidelines for Airport projects, Ministry of Environment and Forest.
- 3. IRC : 76-1979 Guidelines for structural strength Evaluation of Rigid Airfield pavements.
- 4. IRC :105-1928 Specifications for Bituminous Concrete for Airfield Pavements.

	-	-												
	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1				1				1		1			
CO 2		2		2						2		1		
CO 3			3			1							2	
CO 4			2			1							2	
CO 5									1			1		
Total	1	2	5	2	1	2			2	2	1	2	4	
Scaled Value	1	1	1	1	1	1	0	0	1	1	1	1	1	0

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Seme	ster	•		:										
Cours	se (Code		: P	CEE07									
Cours	se N	lame	•	: P	ORT AND HA	RBOU	R ENG	INEERI	NG					
Prere	qui	site		: N	IL									
	L	Т	Р	C		С	Р	Α		L	Т	Р	Н	
					1									

Through this course the students will

3

• To develop a fundamental understanding of Port and Harbour Engineering and its necessity.

0

0

3

0

0

3

- To visualize the relationship between Site Considerations and its Planning of Harbours.
- To know about the various Design Elements of On-Shore and Off-Shore Structures.

3

	Outcome: After the completion of the course, students will	Domain	Level
be able	to	C or P or A	
CO1	Develop an understanding of overall Port and Harbour Engineering and its impact.	Cognitive	Understanding
CO2	Absorbs the Key design Characteristics for design of Elements like Groins, Break waters, jetties etc.	Cognitive	Understanding
CO3	Fully conversant with advanced topics like coastal protection.	Cognitive	Understanding
CO4	Acquire a basic understanding about Navigational Aids	Cognitive	Understanding
CO5	Understand the various features in Ports, their construction, works and coastal Regulations to be adopted.	Cognitive	Understanding

COURSE CONTENT

UNIT I INTRODUCTION

Types of water transportation, water transportation in India, requirements of ports and harbours, classification of harbours, selection of site and planning of harbours, location of harbour, Site investigations – hydrographic survey, topographic survey, soil investigations, current observations, tidal observations

UNIT II COASTAL STRUCTURES

Design and construction of breakwaters, berthing structures - jetties, fenders, piers, wharves, dolphins, trestle, moles, Harbour docks, use of wet docks, design of wet docks, repair docks, lift docks, dry docks, keel and bilge blocking, construction of dry docks, gates for dry docks, pumping plant, floating docks, slipways, locks, size of lock, lock gates, types of gates;

UNIT III DREDGING AND COASTAL PROTECTION

Classification, types of dredgers, choice of dredger, uses of dredged materials, coastal erosion and protection, sea wall, revetment, bulkhead, coastal zone and beach profile.

UNIT IV NAVIGATIONAL AIDS

Requirements of signals, fixed navigation structures, necessity of navigational aids, light houses, beacon lights, floating navigational aids, light ships, buoys, radar.

9

9

9

UNIT V PORT FACILITIES

Port development, port planning, port building facilities, transit sheds, warehouses, cargo handling facilities, container handling terminal facilities, shipping terminals, inland port facilities. Inland waterways, Inland water transportation in India, classification of waterways, economics of inland waterways transportation, national waterways.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Oza and Oza, Elements of Dock and Harbour Engineering, Charotar Publishing House, 1996.
- 2. Srinivasan R. Harbour, "Dock and Tunnel Engineering", 26th Edition 2013.
- 3. Rangwala, "Harbor Engineering", Charotar Publishing House, 2013.

REFERENCE BOOKS

- 1. Bindra S P, "A Course in Docks and Harbour Engineering", DhanpatRai and Sons, New Delhi, 2013.
- 2. Chandola S.P. A text on Transportation Engineering, S. Chand Limited, 2008.
- 3. <u>B.L. Gupta</u>Amit Gupta "Roads, Railways, Bridges, Tunnels & Harbour Dock", Standard Publishers Distributors ,2018.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1							2							
CO 2	1			2									2	
CO 3									3	1				
CO 4				1								3		
CO 5			1				3				2	2		
Total	1		1	3			5		3	1	2	5	2	
Scaled Value	1	0	1	1	0	0	1	0	1	1	1	1	1	0

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester **Subject Name EARTHQUAKE ENGINEERING Subject Code PCEE08 Prerequisite** Nil L Т Р Η С Р L Т Р Η Α 3 0 3 2.5 0 0.5 3 0 0 3 0

Course Objectives

- To introduce the basics of Earthquake Engineering.
- To apply analytical methods for evaluating of seismic resistance of buildings.
- To introduce engineering seismology, building geometrics & characteristics and structural irregularities.

Course	Outcome:	Domain
		C or P or A
CO1	Describe the basics of vibration.	С
CO2	Analyse SDOF and MDOF systems with distributed mass for continuous system.	С
CO3	Quantify the effect of seismic waves.	C & A
CO4	Understand the concept of response spectrum and application of structural dynamics.	С
CO5	Design of Earthquake resistant structures with codal provisions.	С

COURSE CONTENT

UNIT I THEORY OF VIBRATION

Concept of inertia and damping - Types of Damping - Difference between static forces and dynamic excitation - Degrees of freedom, SDOF idealisation - Equations of motion of SDOF system for mass as well as base excitation - Free vibration of SDOF system -Response to harmonic excitation - Impulse and response to unit impulse and response to unit impulse

UNIT II MULTIPLE DEGREE OF FREEDOM SYSTEM

. Two degree of freedom system - Normal modes of vibration - Natural frequencies, Mode shapes - Natural frequencies, Mode shapes - Introduction to MDOF systems -Decoupling of equations of motion - Concept of mode superposition (No derivations)

UNIT III ELEMENTS OF SEISMOLOGY

Causes of Earthquake - Geological faults - Tectonic plate theory - Elastic rebound – Epicentre – Hypocentre - Primary, shear and Raleigh waves – Seismogram - Magnitude and intensity of earthquakes – Magnitude and Intensity scales – Spectral Acceleration - Information on some disastrous earthquakes

9

9

UNIT IV RESPONSE OF STRUCTURES TO EARTHQUAKE

. Response and design spectra - Design earthquake – concept of peak acceleration – Site specific response spectrum - Effect of soil properties and damping - Liquefaction of soils - Importance of ductility - Methods of introducing ductility into RC structures.

UNIT V DESIGN METHODOLOGY

. Design as per the code provisions of IS 1893 - IS 13920 and IS 4326 - Base isolation techniques - Vibration control measures - Important points in mitigating effects of earthquake on structures.

L	Т	Р	Total	
45	0	0	45	

TEXT BOOKS

- 1. David Dowrick ., "Earthquake Resistant Design And Risk Reduction" John Wiley & Sons, 2011
- 2. Kavitha S., Damodarasamy S. R. "Basic of Structural Dynamics and Aseismic Design" PHI Learning Private Limited publishers, 2009.
- 3. Anil K Chopra " Dynamics of structures " Theory and application to Earthquake Engineering, Prentice Hall.2012

REFERENCES

- 1. George G.Penelis and AndreasJ.Kappos,Earthquake Resistant Concrete Structures, Taylor and Francis,.London,UK,2014
- 2. Shashikant K. Duggal "Earthquke resistant design of structures" Oxford University Press, 2013
- 3. Mario Paz, William Leigh "Structural Dynamics-Theory &Computattions" Kluwar Academic Publishers, USA, 2004

Indian Standard Code Books

- 1. IS 1893(Part 1):2002, Criteria for Earthquake Resistant Design of Structures
- IS 13920 2016 Ductile Design and Detailing Of Reinforced Concrete Structures Subjected to Seismic Forces
- 3. IS 4326 2013 Earthquake Resistant Design and Construction of Buildings

Mapping of CO's with PO's:

	P01	P02	P03	P04	P05	P06	P07	P08	604	P010	P011	P012	PS01	PSO2
CO1	3	2	2			1				1			2	
CO2	2	3											1	
CO3	2	1	1			2				1			1	1
CO4	1	2			1		1	1	1	1	1	1		
CO5	2		3		1		1	1				1	2	1
Total	10	8	6		2	3	2	2	1	3	1	2	6	2
Scaled Values	2	2	2		1	1	1	1	1	1	1	1	2	1

N	otor
1.	ote:

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

ter											
t Nam	ie	BRI	DGE ENGIN	EERIN	G						
t Cod	e	XCI	EE 10								
Т	Р	Н		С	Р	Α		L	Т	Р	Н
0	0	3		3	0	0		3	0	0	3
e Obje	ctive		•				-				
To get familiar with design concepts of long and short span bridges.											
• To design the prestressed concrete, Steel and RC bridges.											
To de	esign the	e substr	ructure for brid	ges as p	er IRC	loading	gs.				
Outco	ome: Af	ter the	completion of	the cour	rse, stu	dents w	ill be able	Ι	Doma	in/Lev	rel
									C or	P or A	1
Und	erstand	the con	nponents of bri	idges				C	Und	lerstar	nd)
Asse	ess the b	oehavio	r of various bri	idges.					C (A	nalyse)
Design the steel and concrete bridges C(Create)											
Design the Cable and suspension bridges C (Create)											
Des	ign the s	substruc	cture of bridges	s.					C (0	Create)	
	t Code T 0 C Obje To ge To de To de Outco Und Asse Des:	T P 0 0 e Objective To get famili To design the To design the Outcome: Aff Understand Assess the b Design the s Design the s	BRI XCITPH003 \overline{T} PH003e ObjectiveTo get familiar with To design the prestre To design the substre Outcome: After theUnderstand the corAssess the behavio Design the steel an Design the Cable a	It Name BRIDGE ENGINATION It Code XCEE 10 It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O It O	Image: state in the substructure for bridges as productions: After the components of bridges. Design the steel and concrete bridges Image: state in the steel and concrete bridges	Image: At Name BRIDGE ENGINEERING Image: At Code XCEE 10 Image: Toget familiar with design concepts of long and set to design the prestressed concrete, Steel and RC for the substructure for bridges as per IRC. Image: Toget familiar with design concepts of long and set to design the substructure for bridges as per IRC. Outcome: After the completion of the course, stude Image: Understand the components of bridges. Design the steel and concrete bridges. Design the Cable and suspension bridges.	Image: A base in the substructure for bridges as per IRC loading. Image: A base in the substructure for bridges as per IRC loading. Outcome: After the completion of the course, students we counce the substructure for bridges. Image: A base in the substructure for bridges. Design the substructure for bridges. Design the steel and concrete bridges. Design the steel and suspension bridges.	t NameBRIDGE ENGINEERINGt CodeXCEE 10TPH003CPA3000o bjectiveTo get familiar with design concepts of long and short span bridges.To design the prestressed concrete, Steel and RC bridges.To design the substructure for bridges as per IRC loadings.Outcome: After the completion of the course, students will be ableUnderstand the components of bridgesAssess the behavior of various bridges.Design the steel and concrete bridgesDesign the Cable and suspension bridges	It Name BRIDGE ENGINEERING It Code XCEE 10 It P H It It 0 0 3 0 0 3 It P H It It It It 0 0 3 0 0 3 It 3 It It	t Name BRIDGE ENGINEERING t Code XCEE 10 T P H C P A I T 0 0 3 0 0 3 0 0 3 0 e Objective To get familiar with design concepts of long and short span bridges. To design the prestressed concrete, Steel and RC bridges. Doma C or To design the substructure for bridges as per IRC loadings. Doma C or C (Understand the components of bridges) C (Understand the components of bridges). C (Understand the substructore bridges). C (A Design the steel and concrete bridges C (Q C (Q	It Name BRIDGE ENGINEERING It Code XCEE 10 It I

COURSE CONTENT

UNIT I INTRODUCTION

General Basic Bridge forms – Beam, Arch, Suspension, Various types of Bridges, Selection of type of bridge and economic span length, drainage, road, kerb, Classification, Investigation and Planning. Design Loads for Bridges – Dead Load, Live Load, IRC loading, IRS Loading, AASHTO Loading, Wind Load, Longitudinal forces, Centrifugal Forces, Buoyancy, water current forces, thermal forces deformation and horizontal forces.

UNIT II DESIGN OF REINFORCED CONCRETE BRIDGES

Design Principles of Reinforced concrete bridges - Pigeaud curves - Courbon's theory - design of deck slab; T-beam bridge; balanced Cantilever Bridge

UNIT III DESIGN OF PRESTRESSED CONCRETE BRIDGES

Basic principles-General Design requirements - steel reinforcement in prestressed concrete member - Concrete cover and spacing of pre-stressing steel slender beams - analysis of section for flexure, shear and bond - losses in prestress - analysis and design of anchorage block

UNIT IV DESIGN OF STEEL BRIDGES

Introduction to Steel bridges: Plate girder bridge, truss bridge, suspension cable bridge, cable stayed bridge;

UNIT V BEARINGS AND SUBSTRUCTURES, QUALITY CONTROL9 Hrs.

Classification and types of bearings; Guidelines for selection of bearings-Design of Bearings - Types of foundations, Piers and abutments- Forces on piers and abutments, Design of piers and abutments, bed blocks.

Seismic design considerations; Aerodynamic stability considerations; special durability measures; provisions for inspection and maintenance;

L	Т	Р	Total
45	0	0	45

9

9

9

TEXT BOOKS

- 1. Johnson Victor.D, "Essentials of Bridge Engineering", Oxford & IBH, 2009.
- 2. Krishnaraju.N, "Prestressed Concrete bridges", CBS Publishers, 2012
- 3. Ponnuswamy.S "Bridge Engineering", Tata McGrawHill, 2007.

REFERENCES

- 1. Jagadeesh T.R. and Jayaram .M.A., "Design of Bridge Structures", Prentice Hall of India Pvt Ltd., 2004.
- 2. V. K. Raina, "Concrete Bridges Practice Analysis, Design and Economics", Shroff Publications, New Delhi 2nd Ed. 2005.
- 3. Vazirani, Ratwani and Aswani, "Design of Concrete Bridges", Khanna Publishers, 2ndEd. 2008.

	P01	P02	P03	P04	PO5	P06	P07	P08	P09	PO10	P011	P012	PSO 1	PSO2
CO1	3	3	2	1		1	1		1	1			1	2
CO2	1	3	2			1	1		1	1			1	2
CO3	2	2	3	2		1	1		1	1		1	3	2
CO4	2	2	3	2		1	1		1	1		1	3	2
CO5	2	2	3	2		1	1		1	1		1	3	2
Total	10	12	13	7		5	5		5	5		3	11	10
Scaled Values	2	3	3	2		1	1		1	1		1	3	2

Mapping of course outcomes with program outcomes

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Seme	ster		PCEE	10									
Subje	ect Nan	ne	ADVA	ADVANCED STRUCTURAL ANALYSIS									
Subje	ect Cod	e	XCEE	KCEE05									
Prere	quisite		STRU	CTURAL AN	ALYSI	S							
L	Т	Р	H		С	Р	Α		L	Т	Р	Н	
3	0	0	3		2	0	1		3	0	0	3	

- To introduce the Influence line for indeterminate structures.
- To study the behaviour of different types of frames by classical methods.
- To analyse the plastic nature of the structure using theorems and mechanisms.

Course Outcome:

0000000		2000000
		C or P or A
CO1	Identify the behavior of indeterminate structure by influence lines.	С
CO2	Apply knowledge on advanced methods of analysis of structures including for planes and rigid frames.	С
CO3	Superimpose the effects of settlement and rotation of the supports over the regular analysis.	С
CO4	Apply knowledge of finite element for determinate and indeterminate structures.	С
CO5	Recognize the plastic analysis of structural elements.	С

COURSE CONTENT

UNIT I INFLUENCE LINES - INDETERMINATE STRUCTURES

Influence lines -Maxwell Betti's theorem- Muller Breslau's principle – Influence lines for continuous beams and single storey rigid frames – Indirect model analysis for influence lines of indeterminate structures.

UNIT II STIFFNESS MATRIX METHOD

Element and global stiffness matrices – Analysis of continuous beams – Co-ordinate transformations – Rotation matrix – Transformations of stiffness matrices, load vectors and displacements vectors – Analysis of pin-jointed plane frames and rigid frames.

UNIT III FLEXIBILITY MATRIX METHOD

Equilibrium and Compatibility – Determinate vs indeterminate structures – Indeterminacy - Primary structure – Compatibility conditions – Analysis of indeterminate pin-jointed plane frames, continuous beams, rigid jointed plane frames (with redundancy restricted to two).

UNIT IV FINITE ELEMENT METHOD

Introduction – Discrimination of a structure –differential equilibrium equations- strain displacement relation- isoparametric elements – Shape functions – Lagrange and Serendipity elements — Plane stress and plane strain.

9

9

9

9

Domain

UNIT V PLASTIC ANALYSIS OF STRUCTURES

Plastic moment of resistance – Plastic modulus – Shape factor – Load factor – Plastic hinge and mechanism – Plastic analysis of indeterminate beams and frames – Upper and lower bound theorems.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. "Comprehensive Structural Analysis Vol. 1 & Vol. 2", Vaidyanadhan, R and Perumal, P, Laxmi Publications, New Delhi, 2003
- 2. Structural Analysis", L.S. Negi& R.S. Jangid, Tata McGraw-Hill Publications, New Delhi, Sixth Edition, 2003
- 3. Indeterminate Structures", Wang, C.K., McGraw-Hill

REFERENCES

- 1. Ghali.A, Nebille, A.M. and Brown, T.G. "Structural Analysis" A unified classical and Matrix approach" –5th edition. Spon Press, London and New York, 2003.
- 2. Vazirani V.N, &Ratwani, M.M, "Analysis of Structures", Khanna Publishers, Delhi.
- 3. Structural Analysis A Matrix Approach G.S. Pandit& S.P. Gupta, Tata McGraw Hill., 2005

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
CO1	2	3				1							1	
CO2	3	1	1			1								
CO3	1	3	2					1	1		1			
CO4	3	2	2		1	1					1		1	
CO5	1	1	1		1								1	1
Total	10	10	6		2	3	2	1	1		2		3	1
Scaled Values	2	2	2		1	1	1	1	1		1		1	1

Mapping of course outcomes with program outcomes

te:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semes	ter		:									
Subjec	Subject Name : BASICS OF COMPUTATIONAL HYDRAULICS											
Subjec	Subject Code : PCEE11											
Prerec	Prerequisite : Hydraulic Engineering											
L	Т	Р	Н		С	Р	Α		L	Т	Р	Н
2	1	0	3		2.5	0	0.5		2	1	0	3

- Explain the structure of the 1D, 2D and 3D flow equations as representations of conservation laws
- Classify differential equations in terms of ODE /PDE and determine the nature of a given PDE
- Indicate the nature of the initial and boundary and apply the method of characteristics to solve equations
- Implement finite difference schemes to solve ordinary and partial differential equations

Course	Outcome:	Domain C or P or A
		C OF F OF A
CO1	Simulation of the flow of water, together with its consequences	С
CO2	Apply hydrodynamic techniques and 1 dimensional expansions and contractions	С
CO3	Understand linearized method of characteristics	С
CO4	Able to understand forms of conservation and applications	C & A
CO5	Do different flow modeling using software	С

COURSE CONTENT

UNIT I INTRODUCTION

Significance of computational hydraulics, discrete forms of the laws of construction of mass, momentum and energy. Examples of free surface flows. Derivation of governing equations for flow and transport in surface and sub-surface (saturated and unsaturated flow)

UNIT II 1-D EXPANSIONS

lateral inflow's 1-D expansions and contractions, homogeneous and stratified fluid flows. Equations for reactive transport; Coupled surface and sub-surface flow models; Basics of finite difference, finite element and finite volume methods

UNIT III METHOD OF CHARACTERISTICS

Characteristics and invarients, regions of state, computation of hydraulic jump, indeterminacy conditions, the linearised method of characteristics. Consistency, stability, convergence, order of accuracy computational efficiency application of numerical methods for solving flow and transport equations,

UNIT IV FORMS OF CONSERVATION LAWS

Difference forms of conservation laws, weak solutions applications, storm-sewer networks, diffusion problems, river morphotogy, linear wave propagation. fully coupled and iteratively coupled models; Model simplification, Parameter estimation (Model calibration and validation),

9

9

9

UNIT V COMPUTATIONAL FLUID DYNAMICS (CFD)

9 Hrs.

Numerical methods – Finite difference method with example 1-D horizontal flow. software for three-dimensional turbulent flow modeling, Software for sub-surface flow simulation.

L	Т	Р	Total	
45	0	0	45	

- 1. Brebbia, C.A. and Ferrante, "A.J. Computational Hydraulics" Butterworth & Company (Publishers) Ltd., London, 1983
- 2. Chaudhary, M.H, "Applied Hydraulic Transients" (2 nd Edition) Van Nostrand Reinhold Company Inc., New York, 1987

REFERENCES:

- 1. Mahmood, K. and Yeyjevieh, V, "Unsteady Flow in Open Channels (Vol. I & II)" Water Resources Publications, Fort Collins, Colorado, U.S.A., 1975
- 2. Michael B. Abbott, Anthony W. Minns "Computational Hydraulics" Routledge, 2017
- 3. J. A. Cunge, Michael Barry Abbott, "Engineering Applications of Computational Hydraulics" Pitman Advanced Publishing program.
- 4. Cornelis B. Vreugdenhil,"Computational Hydraulics: An Introduction", Springer Science & Business Media, 2012
- 5. Michael B. Abbott, Anthony W. Minns, "Computational Hydraulics" 1994 Routledge, 2017

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO1	3	1		2										
CO2	3	1												
CO3	3	1		2										
CO4	3	1		2										
CO5	3	1		2										
Total	15	5		8										
Scaled Values	3	1		2										

Mapping of CO's with PO's:

te:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Seme	ster											
Subje	Subject Name WATER RESOURCES ENGINEERING											
Subje	Subject Code PCEE12											
Prerequisite NIL												
L	Т	Р	C		С	Р	Α		L	Т	Р	Н
2	2	0	3		2.5	0	0.5		2	2	0	4
C	01.			-				-				

- To prepare the students for a successful career as hydrologist and water resources engineers
- To develop the ability among students to synthesis data and technical concepts for application in hydrology and water resources engineering
- To provide students an opportunity to work as a part of interdisciplinary team •
- To promote student awareness of the life-long learning and to introduce them professional ethics and codes of professional practice in water resource engineering

Course Outcomes:

At the en	d of the course, students must be in a position to:	Domain C or P or A
CO1	Understand the interaction among various processes in the hydrologic cycle	С
CO2	Understand the forms of precipitation and measurements.	С
CO3	Understand runoff, ground water and well hydrology	С
CO4	Understand water requirement of crops-Crops and crop seasons in India, Methods of applying water.	С
CO5	Understand application of Distribution systems- cannel, Dams, reservoir and spillway.	С
UNIT I	INTRODUCTION	9

Hydrologic cycle, water-budget equation, history of hydrology, world water balance, applications in engineering, sources of data. Precipitation - forms of precipitation, characteristics of precipitation in India, measurement of precipitation, rain gauge network, mean precipitation over an area, depth area- duration relationships, maximum intensity/depth-duration-frequency relationship, Probable Maximum Precipitation (PMP), rainfall data in India

UNIT II ABSTRACTIONS FROM PRECIPITATION

Evaporation process, evaporimeters, analytical methods of evaporation estimation, reservoir evaporation and methods for its reduction, evapotranspiration, measurement of evapotranspiration, potential evapotranspiration over India, actual evapotranspiration, interception, depression storage, infiltration, infiltration capacity, measurement of infiltration.

UNIT III RUNOFF

Runoff volume, SCS-CN method of estimating runoff volume, flow duration curve, flowmass curve, hydrograph, factors affecting runoff, hydrograph, components of hydrograph, base flow separation, effective rainfall, unit hydrograph surface water resources of India, environmental flows. Ground water and well hydrology - forms of subsurface water, saturated formation, aquifer properties, geologic formations of aquifers, well hydraulics: steady state flow in wells, equilibrium equations for confined and unconfined aquifers, aquifer tests

9

UNIT IV WATER WITHDRAWALS AND USES

Water for energy production, water for agriculture, water for hydroelectric generation; flood control. Analysis of surface water supply, Water requirement of crops-Crops and crop seasons in India, cropping pattern, duty and delta; Quality of irrigation water; Soil-water relationships, root zone soil water, infiltration, consumptive use, irrigation requirement, frequency of irrigation; Methods of applying water to the fields: surface, sub-surface, sprinkler and trickle / drip irrigation.

UNIT IV DISTRIBUTION SYSTEMS

Canal systems, alignment of canals, canal losses, estimation of design discharge. Design of channels- rigid boundary channels, alluvial channels, Canal outlets: non-modular, semi-modular and modular outlets. Water logging: causes, effects and remedial measures. Lining of canals, types of lining. *Dams and spillways* - embankment dams: Classification, design considerations, estimation and control of seepage, slope protection. Gravity dams: forces on gravity dams, causes of failure, stress analysis, elementary and practical profile. Arch and buttress dams. Spillways: components of spillways, types of gates for spillway crests; Reservoirs- Types, capacity of reservoirs, yield of reservoir, reservoir regulation, sedimentation, economic height of dam, selection of suitable site.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS:

- 1. Subramanya. K," Engineering Hydrology", Tata Mc-Graw Hill publishing pvt. Ltd., New Delhi, 2010.
- 2. K N Muthreja, "Applied Hydrology", Tata Mc-Graw Hill publishing pvt. Newdelhi
- 3. Larry W. Mays "Water Resources Engineering", Wiley; 2 edition (June 8, 2010)

REFERENCE BOOKS

- 1. <u>G.L. Asawa</u> "Elementary Irrigation Engineering" New Age International Publisher (1999).
- 2. G. L. Asawa, "Irrigation Engineering ", John Wiley & Sons Australia, Limited, 1994.
- 3. J D Zimmerman "Advances in Irrigation" Elsevier, 2013.

Mapping of CO's with PO's:

	P01	P02	P03	P04	P05	904	P07	P08	60d	P010	P011	P012	PSO1	PSO2
CO 1	2		3		1	1								
CO 2	3	1	3		1	1								
CO 3	2	1	3		1	1								
CO 4	2	1	3		1	1								
CO 5	2		3		1	1								
Total	11	3	15		5	5								

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester

: **Course Code PCEE13** :

:

Course Name :

ENVIRONMENTAL GEOTECHNOLOGY

Prerequisite

L	Т	Р	С
3	0	0	3

С	Р	Α
2	0.5	0.5

L	Т	Р	Н
3	0	0	3

Course Objectives

- Have an exposure to interdisciplinary issues pertaining to environment and geotechnical engineering
- Explain the effects of pollutants in soil properties •
- Acquiring the knowledge of the problematic soil deposits under varying environmental conditions •
- Awareness about the adverse effects of soil and ground water contaminants •
- Analyze and apply the various techniques for remediation of the contaminants

	Outcome: After the completion of the course, students will	Domain	Level
be able	to	C or P or A	
CO1	Analyse the soil contamination concentration and type	Cognitive	Understand
CO2	Be trained to develop sustainable and environmentally sound solutions for geotechnical problems	Cognitive Affective	Understand Respond
CO3	Solving environmental engineering problems unique to several soil and subsurface conditions.	Cognitive Psychomotor	Understand Guided Response
CO4	Monitor and analyse quality of ground water	Cognitive Psychomotor	Create Guided Response
CO5	Suggest the steps to remediation of soil and groundwater	Cognitive	Create Respond

COURSE CONTENT

FUNDAMENTALS OF GEOENVIROMENTAL ENGINEERING **UNIT I**

Scope of geo environmental engineering - multiphase behaviour of soil - role of soil in geo environmental applications- sources and type of ground contamination sources, production and classification of waste- health risks posed by heavy metals and emerging pollutants. Impact of climate change, energy resources, case histories on geo environmental problems.

UNIT II **GROUNDWATER CONTAMINATION**

Water quality standards - Sources of contamination- Soil-water-contaminant interactions and its implications - Hydro chemical behavior of contaminants - Trace metals - Trace non metals - Nitrogen, organic substances - Measurement of parameters - Velocity - Dispersivity - chemical partitioning- Factors effecting retention and transport of contaminants.

UNIT III REMEDIATION OF CONTAMINANTS FROM SOIL AND GROUND WATER 10

contaminant transformation: sorption, biodegradation, ion exchange, precipitation ex situ and insitu remediation - solidification, bio-remediation, soil washing, electro kinetics, soil heating, verification, bio venting, Ground water remediation - pump and treat, air sparging, reactive well-Insitu remediation -Case studies

9

UNIT IV SOLID WASTE DISPOSAL AND STABILIZATION

Hazardous waste control and storage system- mechanism of Stabilization, incinerationorganic and inorganic stabilization reutilization of solid waste for soil improvement. Design of landfill: CNS layer, leachate and air collection units

UNIT V ADVANCED SOIL CHARACTERIZATION

Site characterization – risk assessment of contaminated site -Contaminant analysis - water content and permeability measurements – electrical and thermal property evaluation –. Site selection for dumping

L	Т	Р	Total	
45	0	0	45	

- 1. Rowe R.K., "Geotechnical and Geoenvironmental Engineering Handbook" Kluwer Academic Publications, London, 2000.
- 2. Reddi L.N. and Inyang, H. I., "Geoenvironmental Engineering, Principles and Applications" Marcel Dekker Inc. New York, 2000.
- 3. Yong, R. N., "Geoenvironmental Engineering, Contaminated Soils, Pollutant Fate, and Mitigation" CRC Press, New York, 2001.
- Sharma H.D. and Reddy K.R., "Geoenvironmental Engineering: Site Remediation, Waste Containment, and Emerging Waste Management Technologies" John Wiley & Sons, Inc., USA, 2004. 5. Zheng C., "Applied Contaminant Transport Modeling", John Wiley & sons, First edition
- 5. Hsai-Yang Fang, "Introduction to Environmental Geotechnology", CRC Press, New York
- 6. Berkowitz, B. Dror, I. and Yaron, B., "Contaminant Geochemistry" Springer, Germany, 2008.
- 7. Mohamed, A. M. O., "Principles and Applications of Time Domain Electrometry in Geoenvironmental Engineering" Taylor and Francis, New York, 2006.

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1		3	2	3			3		2					3
CO 2			1			3	2		2	1				2
CO 3			1	2			3		3	1				2
CO 4			3	3			3		3					3
CO 5			3	3			3		3					3
Total	0	3	10	11	0	3	14	0	13	2	0	0	0	13
Scaled Value	0	1	2	2	0	1	3	0	3	1	0	0	0	3

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester

Course Code : PCEE14

:

:

Course Name : GEOTECHNICAL DESIGN

Prerequisite

L	Т	Р	С
3	0	0	3

С	Р	Α
2	0	1

L	Т	Р	Н
3	0	0	3

Course Objectives

- To apply the knowledge of soil properties
- To acquire knowledge on geotechnical structures and design principles
- To select proper methods of construction for geotechnical structures

Course be able	Outcome: After the completion of the course, students will to	Domain C or P or A	Level
CO1	Explain the various investigation specifications as per the infrastructure to be build on the proposed site	Cognitive	Understand
CO2	Evaluate the properties of materials required for the constructing a desired geotechnical infrastructure	Cognitive Affective	Understand Respond
CO3	Understand the design concepts of various foundation systems	Cognitive Affective	Understand Guided Response
CO4	Classify the design principles of dams, pavement and retaining walls	Cognitive Affective	Create Guided Response
CO5	Design a underground storage system, buried structures, Geosynthetics	Cognitive Affective	Create Respond

COURSE CONTENT

UNIT I SUBSURFACE SITE EVALUATION AND GEOTECHNICAL STRUCTURES

Planning for subsurface exploration - Methods of exploration - Geophysical exploration - Soil sampling and samplers - In-situ tests - Soil investigation report

Functions and requisites of geotechnical structures - Different types - choice of types - general principles of design - Grouting techniques - Types of grout

UNIT II INTEGRATED DESIGN OF RETAINING WALLS

Introduction - Types of earth pressures - Different theories of earth pressures - Rankine and Coulomb theory - Friction circle method - Terzaghi's analysis Different types of retaining structures - Stability analysis of rigid walls - Design of anchored sheet piles - Lateral pressure on sheeting in braced excavation - stability against piping and bottom heaving - Earth pressure around tunnel lining, shaft and silos.

8

UNIT III PAVEMENTS AND MATERIALS FOR AIRPORTS, HIGHWAYS, HARBOR, ETC. 10

Material characterization for analytical pavement design – CBR and stabilometer tests – Resilient modulus – Fatigue subsystem – failure criteria for bituminous pavements – IRC design guidelines. Pavements types – Approaches to pavement design – vehicle and traffic considerations – behaviour of road materials under repeated loading – Stresses and deflections in layered systems.

UNIT IV DESIGN OF DAMS AND OTHER WATER RETAINING STRUCTURES

Design consideration, Factors influencing design - Types of earth and rockfill dams - Design details - Provisions to control pore pressure - Design consideration - Factors influencing design - Types of earth and rockfill dams - Design details, Provisions to control pore pressure - Special design problems - Slope protection, Filter design, Foundation treatment - Earth dams on pervious soil foundation - Treatment of rock foundation - Construction Techniques - Quality control and performance measurement - Applications of Geosynthetics in earth and rockfill dams

UNIT V UNDERGROUND STORAGE SYSTEM, BURIED STRUCTURES, GEOSYNTHETICS

Design & detailing of Underground Rectangular and Circular Water Tank – buried pipelines - Principles, Concepts and Mechanisms of reinforced earth - Main types of geosynthetics - charactersitics and manufacturing processes - Main functions of geosynthetics and applications in which these functions are most relevant - Principles of design with geosynthetics - Most important geosynthetics characterization tests.

L	Т	Р	Total
45	0	0	45

10

7

TEXT BOOKS

- 1. Analysis and Design of Substructures: Limit State Design by Swami Saran
- 2. Braja M. Das, Principles of Foundation Engineering, by, Cengage Learning
- 3. Singh A, Modern Geotechnical Engineering, 3rd Ed., CBS Publishers, New Delhi, 1999.
- 4. Punmia, B.C. Soil Mechanics and Foundation Engineering, Laxmi Publications Pvt. Ltd., New Delhi, 1995.
- 5. IS: 3370-Indian Standard code of practice for concrete structures for storage of liquids, Bureau of Indian Standards, New Delhi

REFERENCE BOOKS

- 1. AASHTO. (1990). AASHTO Guidelines for Pavement Management Systems, American Association of State Highway and Transportation Officials, Washington DC.
- 2. Koerner, R.M. and Welsh, J.P., Construction and Geotechnical Engineering using Synthetic Fabrics, John Wiley, 1990.
- 3. Robert M. Koerne. Designing with geosynthetics. 5th. New York: Prentice Hall, 2005. ISBN 978-0131454156.
- 4. IS: 12966(Part 2)-1990 "Code of practice for galleries and other openings in dams" (Part 2: Structural design)
- 1. IS: 13551-1992 "Structural design of spillway piers and crest-criteria"

Mapping of CO with PO's

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1	1	3		1	1			2	1		1	1	2	1
CO 2	2	1	2	1	1	2				1	1	2	1	1
CO 3	1	2		1				1		1	1		1	1
CO 4	2	2	2		1	2	1		1	1				1
CO 5	2	1			1								1	
Total	8	9	4	3	4	4	1	3	2	3	3	3	5	4
Scaled Value	2	2	1	1	1	1	1	1	1	1	1	1	1	1

No	te:	Total	0	1-5	6-10	11-15
		Scaled value	0	1	2	3
		Relation	No	Low	Medium	High

Sem	lester	•											
Sub	Subject Name ENVIRONMENTAL FLUID MECHANICS												
Sub	ject (Code PCEE15											
Pre	Prerequisite FLUID MECHANICS												
L	Т	Р	С		С	Р	Α			L	Т	Р	Н
3	0	0	3		3	0	0			3	0	0	3

- Understand the effects of diffusion, advection, dispersion, and chemical reactions on concentrations in the environment
- Apply the governing transport equations to solve problems with diverse boundary and initial conditions
- Evaluate the important processes affecting fate and transport in a range of problem situations

Cours	e Outcome:	Domain
		C or P or A
CO1	apply knowledge of basic mathematics, science, and engineering	С
CO2	Ability to function on multi-disciplinary teams	С
CO3	Ability to identify, formulate and solve engineering problems	С
CO4	Ability to understand the impact of engineering solutions in a global and societal context	С
CO5	Ability to use the techniques, skills, and modern engineering tools necessary for engineering practice	С

COURSE CONTENT

UNIT I INTRODUCTION

Introduction to fluid and mass transport in naturally occurring flows; topics include molecular and turbulent diffusion; dispersion; river, estuary, and ocean mixing; dissolution boundary layers; tidal mixing; offshore wastewater outfalls;

UNIT II APPLICATION AND ANALYSIS

Fick's law -Diffusion equation -Integral solutions: CSTR solutions for marina design -Differential analysis: Instantaneous point source solution in 1D - Advective diffusion and solutions in 2D and 3D Initial spatial distributions; fixed concentrations -Other solutions, superposition and image sources

UNIT III POTENTIAL FLOW

Potential flow -porous media flows, surface/internal waves in oceans and lakes.

UNIT IV LAMINAR FLOW

Laminar flow (channel and overland flow, mud flow, transient and oscillatory boundary layer, induced streaming, mass transport)

UNIT V TURBULENT FLOW

Turbulent flow (instability, characteristics, averaging, Reynolds and turbulent kinetic equations, applications: effluent discharge, boundary layer)

9

9

7

11

L	Т	Р	Total		
45	0	0	45		

TEXT BOOKS

- 1. Chin, David A. (2006). Water Quality Engineering in Natural Systems. Wiley Interscience: Hoboken, New Jersey. (Available free online through the TAMU library)
- 2. Socolofsky, S. A. and Jirka, G. H. (2005), Special Topics on Mixing and Transport in the Environment
- 3. Fischer, Hugo B., List, E. John, Koh, Robert C. Y., Imberger, Jörg, and Brooks, Norman H. (1979), Mixing in Inland and Coastal Waters, Academic Press: San Diego, CA.

REFERENCES

- 1. Chapra, Steven C. (1997), Surface Water-Quality Modeling, McGraw-Hill: Boston, MA.
- 2. Hemond, Harold F. and Fechner-Levy, Elizabeth J. (2000), Chemical Fate and Transport in the Environment, 2nd Edition, Academic Press: San Diego, CA.
- 3. Wainwright, J. and Mulligan, M., eds. (2004), Environmental Modelling: Finding Simplicity in Complexity, John Wiley & Sons , Ltd.: Hoboken, NJ.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO 1	1	1	1			1	1			1			1	1
CO 2	1	1	1			1	1			1			1	1
CO 3	2	1	1			1	1			1				
CO 4	2		2			3	1			1			3	2
CO 5	3		3			2	1			1			3	2
Total	9	3	8			8	5			5			8	6
Scaled Values	2	1	2			2	1			1			2	2

Mapping of course outcomes with program outcomes

Note:	Total	0	1-5	6-10	11-15	
	Scaled value	0	1	2	3	
	Relation	No	Low	Medium	High	

Seme	ster												
Subject Name ENVIRONMENTAL IMPACT ASSESSMENT													
Subje	ct Cod	e	PCEE	CEE16									
Prere	quisite		Nil										
L	Т	Р	Η		С	Р	Α		L	Т	Р	Н	
2	0	0	2		2	0	0		2	0	0	2	

- > To provide a basic understanding of the EIA process as it is used for research, planning, project or program evaluation, monitoring, and regulatory enforcement.
- > To perceive the knowledge on Methodologies for assessment
- > To understand the concepts of legal, economic, social, administrative and technical process
- > To prepare the Environmental audit reports.
- > To provide experience and training in environmental planning and related professions

Course Outcome:

		C or P or A
CO1	Understand the EIA process to apply for research, planning, project	С
CO2	Acquire the knowledge on Assessment methodologies	С
CO3	Understand the concepts of legal, economic, social, administrative and technical process.	С
CO4	Create Environmental audit reports	С
CO5	Experienced and Trained in Environmental Planning and related professions	С

COURSE CONTENT

UNIT I INTRODUCTION

Evolution of EIA: Concepts of EIA methodologies, Screening and scoping; Rapid EIA and Comprehensive EIA; General Framework for Environmental Impact Assessment. Characterization and site assessment.

UNIT II METHODOLOGIES AND ASSESSMENT

Environmental Risk Analysis, Definition of Risk, Matrix Method. Checklist method, Fault tree analysis, Consequence Analysis; Life Cycle Assessment

UNIT III ENVIRONMENTAL MANAGEMENT PLAN

Environmental Legislation; Introduction to Environmental Management Systems; Environmental Statement - procedures; Environmental Audit

UNIT IV ECONOMIC ANALYSIS

Cost Benefit Analysis; Resource Balance, Energy Balance & Management Review; Operational Control;

UNIT V CASE STUDIES

EIA for infrastructure projects – Bridges – Stadium – Highways – Dams – Multi-storey Buildings – Water Supply and Drainage Projects

L	Т	Р	Total
30	0	0	30

Domain

6

6

6

6

TEXT BOOKS

- 1. Canter, L.W., "Environmental Impact Assessment", McGraw-Hill, New York. 2006.
- 2. Lawrence, D.P., "Environmental Impact Assessment Practical solutions to recurrent problems", Wiley-Interscience, New Jersey 2003.
- 3. Petts, J., "Handbook of Environmental Impact Assessment", Vol., I and II, Conwell Science London. 2009.

REFERENCE

- 1. Biswas, A.K. and Agarwala, S.B.C., "Environmental Impact Assessment for Developing Countries", Butterworth Heinemann, London. 2004.
- 2. The World Bank Group, "Environmental Assessment Source Book Vol. I, II and III. The World Bank, Washington. 2001.
- 3. John G. Rau and David C Hooten (Ed)., Environmental Impact Analysis Handbook,
- 4. McGraw-Hill Book Company, New York, 2010.
- 5. Judith petts, handbook of environmental impact assessment vol. i & ii, blackwell science, 1999

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
CO1	1	1	2			3	1	1		1				2
CO2	1	3	1	1		3		1			1	1		1
CO3	1	2	2			2		1			1	1		1
CO4	1	2				1	1							2
CO5	1	2				2	1							3
Total	4	8	5	1		9	2	3		1	2	2		7
Scaled Values	1	2	1	1		2	1	1		1	1	1		2

Mapping CO's with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Seme	ster		:											
Subje	ect Nan	ie	: DESIGN OF HYDRAULIC STRUCTURES											
Subje	ct Cod	e	: PCE	PCEE17										
Prere	quisite		: NIL											
L	Т	Р	C		С	Р	Α		L	Т	Р	Н		
3	0	0	3		2	0	1		3	0	0	3		

- To impart knowledge regarding tank irrigation and impounding structures
- To learn the capacity and design of canal transmission and regulation structures.
- To study on importance of irrigation water management structures.

Course	e Outcome:	Domain
		C or P or A
CO1	Design the Tank irrigation structure and draw the components.	C & A
CO2	Design of dams and energy dissipation structures	C & A
CO3	Design and plot canal transmission structures	C & A
CO4	Analyse and design canal regulation structures	C & A
CO5	Develop strategies for water management in irrigation structures.	С
COUR	SE CONTENT	

UNIT I 9 Hrs. TANK IRRIGATION STRUCTURES Design and Drawing of Tank surplus weirs-Tank sluices weirs on pervious foundations -Percolation ponds **UNIT II IMPOUNDING STRUCTURES** 9 Hrs. Design of Gravity Dams - Earth dams- Spill ways - Energy dissipation devices **UNIT III** CANAL TRANSMISSION STRUCTURES 9 Hrs. Design and Drawing of Aqueducts - Siphon aqueducts - Super passage - Canal siphon -Canal drops – Notch type – Rapid type fall – Siphon well drops UNIT IV **CANAL REGULATION STRUCTURES** 9 Hrs. Design of lined and unlined channels – Design and Drawing of Canal head works – Canal regulator - Canal escape UNIT V **IRRIGATION WATER MANAGEMENT STRUCTURES** 9 Hrs. On farm development works - Structures for proportional field distribution-Drought management-Case study.

L	Т	Р	Total
30	0	0	30

TEXT BOOKS

- 1. Garg, S.K. Irrigation Engineering and Hydraulic Structures. Khanna Publishers, Delhi," 2008
- 2. Sharma R.K, "Irrigation Engineering and Hydraulic Structures", Oxford and IBH Publishing Co., New Delhi, 2016
- 3. N NBasak " Irrigation Engineering', Tata Mcgraw Hill publishing company limited, NewDelhi,2007

REFERENCES

- 1. Punmia, BC; and PandeBrijBansiLal, 'Irrigation and Water Power Engineering', Delhi, Standard Publishers Distributors,2016
- 2. Sharma, SK; 'Principles and Practice of Irrigation Engineering', , Prentice Hall of India Pvt. Ltd. , New Delhi
- 3. <u>Madan Mohan Das</u>, <u>Mimi Das Saikia</u>, "Irrigation And Water Power Engineering", PHI Learning Private Limited, Delhi,2009

	P01	P02	P03	P04	P05	P06	P07	P08	909	P010	P011	P012	PS01	PSO2
CO1	3	2	1	3	2	2				2	1	1	3	2
CO2	3	2		2	2	2				1	1	1	3	2
CO3	3	2		3	2	2				1	1	1	3	2
CO4	3	2		2	2	2				1	1	1	3	2
CO5					3	2	2	1	1	2		1		1
Total	12	8	1	10	11	10	2	1	1	7	4	5	12	9
Scaled Values	3	3	1	2	3	2	1	1	1	2	1	1	3	2

Mapping of course outcomes with program outcomes

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester

SURFACE HYDROLOGY

PCEE18

Subject Name Subject Code

Prerequisite

L	Т	Р	H	С	Р	Α	L	Т	Р	
3	0	0	3	2.5	0	0.5	3	0	0	

Course Objectives

- To study the hydrologic cycle and evaporation techniques
- To know the infiltration and runoff
- An ability to analyse the various methods of floods frequency analysis

Course Outcome:

		C or P or A
CO1	Calculate the various components of hydrologic cycle	С
CO2	Apply the principle of hydrograph to estimate flood characteristics	С
CO3	Understand the infiltration processes	C & A
CO4	Able to understand the runoff detailing	С
CO5	Estimate the flood peak discharge	С

COURSE CONTENT

UNIT I INTRODUCTION

Introduction: Hydrologic cycle - systems concept - hydrologic system model - hydrologic model classification. Stream flow measurement - measurement of stage – discharge measurements. Stage – discharge relations - selection of a stream gauging site – stream gauge network.

UNIT II EVAPORATION

Measurement, estimation and control of evapo-transporation (ET) – evapo-transpiration and consumptive use – lysimeters and field pots – potential ET and its computation – pan evaporation - Pennman's method – Blaney Criddle method – reference crop ET and crop coefficient – interception and depression storage.

UNIT III INFILTRATION PROCESSES

Measurement – Infiltration Capacity And Indices – Model Of Infiltration. Rain Water Harvesting – Advantages – Alterations In Hydrologic Cycle – Methods Of Water Conservation.

UNIT IV RUNOFF

Components of runoff – Characteristics of runoff – factors affecting runoff – components of hydrograph – base flow separation – rain fall – runoff relations – flow duration curve – flow Mass curve – hydrograph analysis – unit hydrograph theory – derivation of unit hydrograph – applications and limitations of unit hydrograph – 'S' hydrograph – instantaneous unit hydrograph – unit hydrograph for ungauged catchments – synthetic hydrograph – conceptual elements – linear reservoirs – Nash model. Yield from a catchment – flow duration curves – flow mass curve.

9

Domain

9

9

UNIT V **FLOODS**

Floods - estimation of peak discharge - rational method - unit hydrograph method. Probabilistic and statistical methods - basic concept of probability and frequency distribution - skewness coefficient - return period discrete distribution - Binomial distribution – continuous distribution – flood frequency analysis – normal, lognormal, Gumbel and Log-Pearson Type III methods. Flood routing - reservoir routing - Modified pulse method - channel routing - Musking hum method.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Garg S.K., Hydrology and Water Resources Engineering
- 2. Subramanya, K., Engineering Hydrology, Tata McGraw Hill, New Delhi.
- 3. Raghunath, H.M., Groundwater, 1987, Wiley Eastern Ltd., New Delhi.
- 4. Modi, P.N., Irrigation Water Resources and Water Power Engineering, Standard Book House, New Delhi.

REFERENCES

- 1. Todd, D.K., Groundwater Hydrology, 1993 John Wiley & Sons..
- 2. Raghunath, H.M., Hydrology Principles, Analysis and Design, 1986, Wiley
- 3. Dr. P.Jaya Rami Reddy, A Textbook of Hydrology, University Science Press.

Mapping of course outcomes with program outcomes

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO1	1	1				2	1			1				2
CO2	1	1				2	1			2				2
CO3	1	1				2	1			2				2
CO4	1	2				3	1			2				3
CO5	2	1				3	1			3				3
Total	6	6				12	5			10				12
Scaled Values	2	2				3	1			2				2

Note:	

ote:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Seme	ster		:										
Subje	ct Nam	ie	: REPAIR & REHABILITATION OF STRUCTURES.										
Subje	ct Cod	e	: PCEE19										
Prere	quisite		: Conc	rete Technolo	gy								
L	Т	Р	Н		С	Р	Α		L	Т	Р	Н	
3	0	0	3		3	0	0		3	0	0	3	

- To gain the knowledge on maintenance and repair strategies
- To perceive the knowledge on quality of concrete
- To recognize various types of materials and its properties
- To assess the damage to structures using various tests
- To learn various repair techniques of damaged structures and corroded structures

Course	e Outcome:	Domain
		C or P or A
CO1	Understand the importance of maintenance and repair	С
CO2	Understand the concept of quality assurance of concrete properties	С
CO3	Understand the various concrete materials used for repair works	С
CO4	Knowledge in the application of repair techniques in concrete construction	С
CO5	Understand the repair, rehabilitation and retrofitting of structures	С

COURSE CONTENT

UNIT I MAINTENANCE AND REPAIR STRATEGIES

Maintenance and Repair Strategies Maintenance, Repair and Rehabilitation, Facts of Maintenance, importance of Maintenance, Various aspects of Inspection, Assessment procedure for evaluating a damaged structure, causes of deterioration;

UNIT II STRENGTH AND DURABILITY OF CONCRETE

Quality assurance for concrete – Strength, Durability and Thermal properties, of concrete – Cracks, different types, causes – Effects due to climate, temperature, Sustained elevated temperature, Corrosion – Effects of cover thickness

UNIT III SPECIAL CONCRETES

Polymer concrete, Sulphur infiltrated concrete, Fibre reinforced concrete, High strength concrete, High performance concrete, Vacuum concrete, Self-compacting concrete, Geopolymer concrete, Reactive powder concrete, Concrete made with industrial wastes;

UNIT IV REPAIR TECHNIQUES

Techniques for Repair and Protection Methods- Non-destructive Testing Techniques, Epoxy injection, Shoring, Underpinning, Corrosion protection techniques – Corrosion inhibitors, Corrosion resistant steels, Coatings to reinforcement, cathodic protection;

UNIT V REPAIR, REHABILITATION AND RETROFITTING OF STRUCTURES

Evaluation of root causes; Underpinning & shoring; some simple systems of rehabilitation of structures; Guniting, shotcreting; Non-Destructive testing systems; Use of external plates, carbon fibre wrapping and carbon composites in repairs. Strengthening of Structural elements, Repair of structures distressed due to corrosion, fire, Leakage, earthquake – Demolition Techniques – Engineered demolition methods – Case studies.

9

9

9

9

L	Т	Р	Total
45	0	0	45

- 1. Denison Campbell, Allen and Harold Roper, "Concrete Structures", Materials, Maintenance and Repair, Longman Scientific and Technical UK, 1991.
- 2. Norbert Delatte, "Failure, Distress and Repair of Concrete Structures", Woodhead Publishing, 2009.
- 3. Shetty.M.S., "Concrete Technology Theory and Practice", S.Chand and Company, New Delhi, 2009.

REFERENCES

- 1. Deterioration, maintenance and repair of structures, Johnson SM McGraw Hill International Publishers, New York.
- 2. Santhakumar, A.R., "Training Course notes on Damage Assessment and repair in Low Cost Housing", "RHDC-NBO" Anna University,1992.
- 3. Raikar, R.N., "Learning from failures Deficiencies in Design", Construction and Service R & D Centre (SDCPL), RaikarBhavan, Bombay, 1987.
- 4. Ravishankar.K., Krishnamoorthy.T.S, "Structural Health Monitoring, Repair and Rehabilitation of Concrete Structures" Allied Publishers, 2004

Mapping of course outcomes with program outcomes

	P01	P02	P03	P04	P05	P06	P07	P08	909	P010	P011	P012	PS01	PSO2
CO1	2	1	-	-	1								2	1
CO2	2	1	-	-	1								2	1
CO3	2	1	-	-	1								2	1
CO4	3	2	1	1	1								3	1
CO5	3	2	1	1	1								3	1
Total	12	7	2	2	5								12	5
Scaled values	3	2	1	1	1								3	1

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semester

Course Code : PCEE19

:

•

Course Name : URBAN HYDROLOGY AND HYDRAULICS

Prerequisite

L	Т	Р	С	С	Р	Α	L	Т	Р	Н
3	0	0	3	2	0	1	3	0	0	3

Course Objectives

At the end of the course the student will be able to

- Develop intensity duration frequency curves for urban drainage systems.
- Develop design storms to size the various components of drainage systems.
- Apply best management practices to manage urban flooding.
- Prepare master drainage and hydraulics plan for an urbanized area.

Course <i>able to</i>	Outcome: After the completion of the course, students will be	Domain C or P or A	Level
CO1	Understand the importance of short duration rainfall runoff data for urban hydrology studies	Cognitive	Understand
CO2	Understand the importance of short duration rainfall runoff data for urban hydrology studies	Cognitive	Understand
CO3	Understand the importance of short duration rainfall runoff data for urban hydrology studies	Cognitive Affective	Understand Respond
CO4	Learn some of the best management practices in urban drainage.	Cognitive	Understand
CO5	Understand the concepts of preparation master urban drainage system.	Cognitive Affective	Understand Respond

COURSE CONTENT

UNIT I PRECIPITATION ANALYSIS:

Urbanization and its effect on water cycle – urban hydrologic cycle – trends in urbanization – Effect of urbanization on hydrology. Importance of short duration of rainfall and runoff data, methods of estimation of time of concentration for design of urban drainage systems, Intensity-Duration -Frequency (IDF) curves, design storms for urban drainage systems.

UNIT II APPROACHES TO URBAN DRAINAGE:

Time of concentration, peak flow estimation approaches, rational method, NRCS curve number approach, runoff quantity and quality, wastewater and storm water reuse, major and minor systems.

UNIT III HYDROLOGIC DESIGN:

Analysis of Precipitation Data, Construction of IDF curves, Estimation of Evaporation and Evapotranspiration, Determination of Yield from A Catchment, Derivation of Unit Hydrograph, Estimation of Design Flood, Regional Flood Frequency Analysis, Hydrologic and Hydraulic flood routing, Derivation of Synthetic Unit Hydrograph.

9

9

UNIT IV URBAN HYDRAULICS:

Sources and distribution of water in urban environment, including surface reservoir requirements, utilization of groundwater, and distribution systems. Analysis of sewer systems and drainage courses for the disposal of both wastewater and storm water. Pumps and lift stations. Urban planning and storm drainage practice.

UNIT V **ANALYSIS AND MANAGEMENT:**

Storm water drainage structures, design of storm water network- Best Management Practices-detention and retention facilities, swales, constructed wetlands, models available for storm water management.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 'Manual on Drainage in Urbanized area 'by Geiger W. F., J Marsalek, W. J. Rawls and F. C. Zuidema, 1. (1987 - 2 volumes), UNESCO,
- 'Urban Hydrology' by Hall M J (2015), Elsevier Applied Science Publisher. 2.
- 'Hydrology Quantity and Quality Analysis' by Wanielista M P and Eaglin (2016), Wiley and Sons. 3.
- 4. 'Urban Hydrology, Hydraulics and Storm water Quality: Engineering Applications and Computer Modeling' by Akan A.O and R.L. Houghtalen (2016), Wiley International.

REFERENCE BOOKS

- 'Storm water Detention for Drainage' by Stahre P and Urbonas B (2000), Water Quality and CSO 1. Management, Prentice Hall.
- 'Urban water cycle processes and interactions' by Marsalek et al (2016), Publication No. 78, UNESCO, 2. Paris (http://www.bvsde.paho.org/bvsacd/cd63/149460E.pdf)
- 'Frontiers in Urban Water Management Deadlock or Hope' by Maksimovic C and J A Tejada-3. Guibert (2015), IWA Publishing.

	GA1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA10	GA11	GA12
CO 1	3	2			2							2
CO 2	3	2			2							2
CO 3	3	2	1	2	2							2
CO 4	3	2	1	2	2							2
CO 5	3	2	1		2			1			2	2
Total	15	10	3	4	10	0	0	1	0	0	2	10
Scaled Value	3	2	1	1	2	0	0	1	0	0	1	2

Mapping of CO with GA's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Semest	er :									
Course Code	: PCEE21									
Course Name	: BUILDING CO	ONSTRU	JCTION	N PRAC	TICE.					
Prereq	uisite :									
L	T P C	С	Р	Α		L	Т	Р	H	
3	0 0 3	2	0	1		3	0	0	3	
Course	Objectives						1			
• To	make aware of site clearance	, markin	g and ea	rthwork						
• To	gain the knowledge in mason	ry and fi	nishes							
• To	perceive the knowledge on s	shuttering	g and sca	affolding	5					
	understand the latest construct		-		-					
	understand the latest construct		•							
	Outcome: After the complet		•	•		Dor	nain		Lev	70]
able to	Outcome. After the complet	ion oj in	ie course	e, siuuer	us will be	C or]			Lev	(CI
CO1	Able to understand the cons	truction	activities	8		Cognit	ive	ι	Under	stand
CO2	Perceive the knowledge on	various r	nasonry	and finis	shes	Cognit	ive	I	Under	stand
CO3	Explain the shuttering and s	caffoldir	ng metho	ods		Cognit	ive	I	Under	stand
						Affect	ive		Resp	ond
CO4	Identify various techniq construction	ues ado	opted i	n sub	structure	Cognit	ive	I	Under	stand
CO5	Understand the different tec	hniques	used in s	super-str	uctures	Cognit	ive	I	Under	stand

COURSE CONTENT

UNIT I INTRODUCTION

Specifications, details and sequence of activities and construction co-ordination – Site Clearance – Marking – Earthwork

UNIT II MASONRY AND FINISHES

Masonry – stone masonry – Bond in masonry - concrete hollow block masonry – flooring – laying brick Building foundations – basements – weather and water proof – roof finishes - acoustic and fire protection;

UNIT III SHUTTERING AND SCAFFOLDINS

Temporary shed – centring and shuttering – slip forms – scaffoldings – de-shuttering forms – Fabrication and erection of steel trusses – frames – braced domes.

UNIT IV SUB STRUCTURE CONSTRUCTION

Techniques of Box jacking – Pipe Jacking -under water construction of diaphragm walls and basement-Tunnelling techniques – Piling techniques - well and caisson - sinking cofferdam - cable anchoring and grouting-driving diaphragm walls, sheet piles - shoring

9

9

7

for deep cutting - well points -Dewatering and stand by Plant equipment for underground open excavation;

UNIT V SUPER STRUCTURE CONSTRUCTION

Launching girders, bridge decks, off shore platforms – special forms for shells - techniques for heavy decks – in-situ pre-stressing in high rise structures, Material handling - erecting light weight components on tall structures - Support structure for heavy Equipment and conveyors - Erection of articulated structures, braced domes and space decks;

L	Т	Р	Total
45	0	0	45

9

TEXT BOOKS

- 1. Peurifoy, R.L., Ledbetter, W.B. and Schexnayder, C., Construction Planning, Equipment and Methods, McGraw Hill, Singapore, 5th Edition, 2015.
- 2. Arora S.P. and Bindra S.P., Building Construction, Planning Techniques and Method of Construction, DhanpatRai and Sons, New Delhi 2007.

REFERENCES

- 1. Jha, J and Sinha, S.K., Construction and Foundation Engineering, KhannaPublishers, New Delhi, 2004.
- 2. Sharma S.C. Construction Equipment and Management, Khanna Publishers New Delhi, 1988.
- 3. Deodhar, S.V. Construction Equipment and Job Planning, Khanna Publishers, New Delhi, 1988.
- 4. Mahesh Varma, Construction Equipment and its Planning and Application, Metropolitan Book Company, New Delhi, 1983

	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO1	PSO2
CO 1	1	2				1								1
CO 2	1	2				1								1
CO 3	2	2				1								1
CO 4	3	3				2								2
CO 5	3	3				2								2
Total	10	12	0	0	0	1	0	0	0	0	0	0	0	1
Scaled Value	3	2	1	1	1	0	0	0	0	0	0	0	2	1

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

Seme	ester												
Subj	ect Na	me	ТА	LL STRUCTU	URES								
Subj	ect Co	de	PC	EE22									
Desi	gned b	y	Dej	partment of Ci	ivil Engi	ineering	g						
Prer	equisi	te	Des	sign of Concre	te Struc	tures, E	Design o	f Steel Structu	re				
L	Т	Р	С		С	Р	Α		L	Т	Р	Н	
	1												

Preamble

1

0

3

3

This course provides the basic knowledge of the design principles and the material properties of tall buildings. The study includes the various structural behaviour of different types of frames. It also deals with the analysis and design parameters of tall structures.

0

1

3

0

0

3

Course Objective:

- 1. To know the design criteria based on different loading conditions.
- 2. To gain knowledge about the structural behavoiur of various frames.

2

- 3. To learn about the different methods of analysis of tall structures.
- 4. To make the students understand about the stability factors of tall buildings.

Course	Outcome:	Domain
On the s	successful completion of the course, students will be able to	
CO1	Identify the design criteria and design philosophy.	C(Understand)
CO2	Approach the design of tall buildings with static and dynamic loading.	C(Application)
CO3	Assimilate the behaviour of different types of structural systems.	C (Understand)
CO4	Analyse the members and identify the reduction techniques	C(Analyse)
CO5	Correlate the translational and torsional effects in tall buildings	C(Evaluate)
COUD		

COURSE CONTENT

UNIT - I DESIGN CRITERIA

Design philosophy - Loading - sequential loading - strength and stability - stiffness and drift limitations - human comfort criteria, creep – shrinkage and temperature effects – fire – foundation, settlement and soil structures interaction.

UNIT - II LOADS ON TALL BUILDINGS – CODE RECOMMENDATIONS

Gravity loadings: Dead load & live load – Live load reduction methods – impact load – gravity load –construction load.

Wind Loading : Static & dynamic approach – Analytical & wind tunnel experimental method

Earthquake Loading : Equivalent lateral force - model analysis -combination of loading

9

UNIT-III BEHAVIOUR OF STRUCTURAL SYSTEMS

Rigid frames – braced frames – In filled frames – shear walls –coupled shear walls – wall frames tubular – cores & hybrid mega systems.

UNIT -IV ANALYSIS AND DESIGN

Modeling for approximate analysis - Accurate analysis and reduction Techniques - Analysis of buildings as total structural system considering overall integrity and major subsystem interaction - Analysis for member forces - drift and twist - computerized general 3D analysis.

UNIT - V STABILITY OF TALL BUILDING

Overall buckling analysis of frames - wall - frames - Approximate methods - second - order effects of gravity loading - p - Delta analysis Simultaneous first order and P-Delta analysis, Translational - Torsional instability out of plumb effects - stiffness of member instability - effect of foundation rotation.

L	Т	Р	Total
45	0	0	45

TEXT BOOKS

- 1. Dave parker, Antony wood , "The Tall Buildings-Reference Book", Routledge Taylor & Francis group, London, 2013
- 2. Guy Nordenson, Terence riley, "Tall buildings", The museum of modern art, New York, 2003.
- 3. Bryan Stafford Smith, Alexcoull, Tall Building Structure Analysis and Design, John Wiley & Sons, 1991.

REFERENCES

1. Wolf Gang Schuller, "High Rise Building Structures", John Wiley &sons, 1977.

2. Taranath.B.S, "Structural Analysis & Design of Tall Buildings", Tata McGraw

Hill, 1988.

3. Lynn, S.Beedle, "Advances in Tall Buildings", CBS Publishers, Delhi, 1986.

9

9

Seme	ester											
Subj	ect Na	me	EN	VIRONMENT	FAL LA	W ANI	D POLI	CY				
Subj	ect Co	ode	PC	EE23								
Prer	equisi	te	En	vironmental E	ngineer	ing						
L	Т	Р	С		С	Р	Α		L	Т	Р	Н
2	0	0	2		2	0	1		2	0	0	2
Cour	rse Ob	jectiv	/es	<u>1</u>				<u>1</u>				
•	То	recog	nize	statutory goal s	etting m	neans an	d approa	iches				
•	То	gain	know	ledge in impler	nenting	the envi	ronment	al law statutes	to fac	ctual s	situati	ons.

- To analyse the legal opinions and legal principles
- CO1 Describe different methods for setting environmental goals and the means to achieve those goals C (Knowledge)
- CO2 Read and understand legal opinions and analyze opinions to find legal principles C (Knowledge)
- CO3 Apply common law environmental remedies and explain how those remedies supplement environmental statutory law C (Apply)
- CO4 Apply major common law environmental causes of action and environmental law statutes to factual situations. C (Apply)

COURSE CONTENT

UNIT I INTRODUCTION

Concept of laws and policies, Origin of environmental law, Introduction to environmental laws and policies, Environment and Governance, sustainable development and environment.

UNIT II ENVIRONMENTAL PROTECTION

Duties and responsibilities of citizens for environmental protection – Subjects related to environment in the seventh schedule of the Constitution: Union list, State list and Common or Concurrent list - Scheme of labelling of environmentally friendly products (ecomark) – Significance of Environmental Education – Environmental Information Systems (ENVIS)

UNIT III ENVIRONMENTAL LAWS IN INDIA

Legal control of Environmental pollution in India with special reference to: Environment (Protection) Act, 1986 - Powers of Central Government under EPA - The Water (Prevention and Control of Pollution) Act 1974 - Air (Prevention and Control of Pollution) Act, 1981 – Forest Conservation Act, 1980 – Wildlife (Protection) Act, 1972 - The National Green Tribunal Act, 2010

UNIT IV GUIDELINES AND RULES FOR ENVIRONMENTAL PROTECTION

Guidelines for Common Effluent Treatment Plants (CETPs) – Guidelines for environmentally sound management of e-waste 2008 - The Biomedical waste (Management and Handling) Rules 1998 - Hazardous Waste (Management and Handling) Rules, 1989 - The Municipal Solid Wastes (Management and Handling) Rules, 2000 - The Ozone Depleting Substances (Regulation and Control) Rules, 2000

6

5)

6

5

UNIT V MAJOR INITIATIVES/POLICIES FROM MOEF

Central and State Pollution Control Boards: Powers and functions of pollution control boards - Penalties and procedure - National Policies for Environmental Protection in India: National River Conservation Plan (NRCP), National Green Tribunal (NGT), Capacity Building for Industrial Pollution Management (CBIPM), National Environmental Protection Authority (NEPA), Green India Mission – Environmental Clearances: National Environmental Assessment and Monitoring Authority (NEAMA)

L	Т	Р	Total
30			30

TEXT BOOKS

- 1. Constitution of India Eastern Book Company Lucknow 12thEd. 1997.
- 2. Constitutional Law of India J.N. Pandey 1997 (31stEdn.) Central Law Agency Allahabad.
- 3. Administrative Law U.P.D. Kesari 1998. Universal Book Trade Delhi.
- 4. Environmental Law H.N. Tiwari, Allahabad Law. Agency 1997.

REFERENCES

- 1. Environmental, A., Divan and Noble M. Environmental Law and Policy in India (cases, Materials and Statutes) 1991 Tripathi Bombay.
- 2. Environmental Policy. Forest Policy. Bare Acts Government Gazette Notification.

WEB REFERENCES

- cpcb.nic.in/
- http://envfor.nic.in/
- www.tnpcb.gov.in/
- www.thesummitbali.com/
- envfor.nic.in/legis/legis.html
- edugreen.teri.res.in/explore/laws.htm
- envfor.nic.in/legis/crz/crznew.html
- rti.gov.in/
- www.ngosindia.com/resources/pil.php

Mapping of CO's with PO's:

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
CO1	2	2		1								1	2	1
CO2	2	2	1	1								2	3	2
CO3	1	3	1			1	1			1		1	2	3
CO4	2	2	3	2		1							1	3
CO5	2	1	3	1								2	1	2
	9	10	8	5		2	1			1		6	9	11
Scaled values	3	3	2	1		1	1			1		1	2	2

Semester

Subject Name GROUNDWATER ENGINEERING

Subject Code PCEE24

Prerequisite Nil

L	Т	Р	С	С	Р	A	L	Т	Р	Η
3	0	0	3	2	0	1	3	0	0	3

COURSE OBJECTIVE

- Water quality criteria and standards, and their relation to public health, environment and urban water cycle;
- Water quality concepts and their effect on treatment process selection;
- The interaction of water quality and the materials being used;
- Hydraulic concepts and their relationship to water transport in treatment plants, pipelines and distribution networks;
- Be able to define and evaluate project alternatives on basis of chosen selection criteria;
- Water quality engineering within a watershed context.

Course	e Outcome:	Domain
After th	ne completion of the course, students will be able to	C or P or A
CO1	Relate and Interpret the Development and evolution of ecosystems.	С
CO2	Explain and Apply Fluvial Ecosystem Diversity.	С
CO3	Classify and Develop the stream water chemistry.	C & A
CO4	Classify and Dissect necessity of Water quality models.	С
CO5	List and respond to Formulation of anisotropic and non-homogenous flow of groundwater.	C & A

COURSE CONTENT

UNIT I INTRODUCTION:

Development and evolution of ecosystems – Principles and concepts – Energy flow and material cycling – productivity – Classification of Eco technology – ecological engineering- Classification of systems – Structural and functional interactions of environmental systems – Mechanisms of steady-state maintenance in open and closed systems- Modeling and Eco technology – Classification of ecological models – Applications- Ecological economics- Self-organizing design and processes.

UNIT II FLUVIAL ECOSYSTEMS:

Fluvial Ecosystem Diversity- The Water Cycle – Stream flow- Flow Variation- The Stream Channel- Sediments and their Transport- Fluvial Processes along the River Continuum.

UNIT III STREAMWATER CHEMISTRY:

Dissolved Gases -Major Dissolved Constituents of River Water-Variability in ionic concentrations -The dissolved load -Chemical classification of river water-The Bicarbonate Buffer System-Influence of Chemical Factors on the Biota-Variation in ionic concentration-Salinization -Effects of acidity on stream ecosystems.

9

9

UNIT IV WATER QUALITY:

Water quality models – Historical development – Non point source pollution- Mass balance equation – Streeter - Phelps Equation – Modification to Streeter – Phelps Equation – Waste load allocations – Dissolved oxygen in Rivers and estuaries; Lake Water Quality Models; Models for Nitrogen, Bacteria, Phosphate and toxicants - Ground Water Quality Modeling - Contaminant solute transport equation, Numerical methods legislations for water quality.

UNIT V GROUNDWATER MODELING:

Formulation of anisotropic and non-homogenous flow of groundwater, finite difference methods for solving groundwater flow problems, regional groundwater flow modeling.

	L	Т	Р	Total	I
	45			45	1
TEXT BOOKS					

TEXT BOOKS

- 1. Chow, V.T., Maidment, D.R. and Mays, L.W. (2010),"Applied Hydrology", Tata McGraw Hill Edition
- 2. Warren Viessman, Jr. and G L Lewis, (2018), "Introduction to Hydrology", Prentice Hall India Pvt. Ltd., New Delhi
- 3. Davis, S.N. and De Weist, R.J.M. (2012), "Hydrogeology", John Wiley & Sons, N York
- 4. Watters, G.Z, Analysis and control of pipe flow in pipes, Butter Worth Publishers, 2014.

REFERENCES

- 1. Dandekar, M.M., and Sharma, K.N., (2013), Water Power Engineering, Vikas Publishing Company, New Delhi.
- 2. Stahre, P., Urbonas, B., (2014), "Stormwater Detention for Drainage, water quality and CSO Management", Prentice Hall, New Jersey.
- 3. McCuen R.H., Hydrologic Analysis and Design, Prentice Hall Inc. N York, 2015

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
CO1	2	3			2							2		
CO2	2	2			3							2		
CO3	3	2	1	2	2							2		
CO4	3	2	1	2	2							2		
CO5	3	2	1		2			1			2	2		
	13	11	3	4	11			1			2	10		

Mapping of COs with GAs

Sen	nester			VIII									
Sub	oject N	lame		SOLID AND	HAZAI	RDOUS	WAST	E MANAGEN	IENT	[
Sub	oject (Code		PCEE25	EE25								
Pre	erequi	site	e Environmental Engineering										
L	Т	Р	С		С	Р	Α		L	Т	Р	Н	
2	0	0	2		2	0	1		2	0	0	2	

Course Objectives

The objectives of this course is

• To make the students conversant with the types, sources, generation, storage, collection, transport, processing and disposal of municipal solid waste.

CO1	Characterize the physical and chemical composition of Solid and Hazardous waste	C & A
CO2	Explain the functional elements for solid waste management System	С
CO3	Identify the methods of collection, segregation and transport of solid and Hazardous waste	С
CO4	Understand the techniques and methods used in energy recovery and recovery of materials from solid wastes	C & A
CO5	Describe methods of disposal of solid and hazardous waste.	С

COURSE CONTENT

UNIT I SOURCES, CLASSIFICATION AND REGULATORY 6 FRAMEWORK

Types and Sources of solid wastes - Need for solid waste management – Elements of integrated waste management and roles of stakeholders - Salient features of Indian legislations on management and handling of municipal solid wastes, hazardous wastes, biomedical wastes, E-wastes, Lead Acid batteries, plastics and fly ash - Financing waste management.

UNIT II WASTE CHARACTERIZATION AND SOURCE REDUCTION

Waste generation rates and variation - Composition, physical, chemical and biological properties of solid wastes –Hazardous characteristics - TCLP tests - Waste generation from nuclear power plants- Waste sampling and characterization plan - Source reduction of wastes –Waste exchange - Extended producer responsibility - Recycling and reuse.

UNIT III STORAGE, COLLECTION AND TRANSPORT OF WASTES

Handling and segregation of wastes at source – storage and collection of municipal solid wastes – Analysis of Collection systems - Need for transfer and transport – Transfer stations Optimizing waste allocation –compatibility, storage, labeling and handling and Transport of hazardous wastes.

6

UNIT IV WASTE PROCESSING TECHNOLOGIES

Material separation and processing technologies – biological and chemical conversion technologies – methods and controls of Composting - thermal conversion technologies and energy recovery – incineration- solidification and stabilization of hazardous wastes – bio medical waste treatment.

UNIT V WASTE DISPOSAL

Waste disposal options – Disposal in landfills - Landfill Classification, types and methods – site selection - Design and operation of sanitary landfills, secure landfills and landfill bioreactors – leachate and landfill gas management – landfill closure and environmental monitoring – Rehabilitation of open dumps – landfill remediation-Hazardous and Nuclear waste disposal options.

L	Т	Р	Total
30			30

TEXT BOOKS

- 1. George Tchobanoglous, Hilary Theisen and Samuel A, Vigil, "Integrated Solid Waste Management, Mc-Graw Hill International edition, New York, 1993.
- Michael D. LaGrega, Philip L Buckingham, Jeffrey C. E vans and Environmental Resources Management, Hazardous waste Management, Mc-Graw Hill International edition, New York, 2001

REFERENCES

- 1. CPHEEO, "Manual on Municipal Solid waste management, Central Public Health and Environmental Engineering Organization, Government of India, New Delhi, 2000.
- 2. Vesilind P.A., Worrell W and Reinhart, Solid waste Engineering, Thomson Learning Inc., Singapore, 2002.

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO 1	PSO2
CO1	2	2		1								1	2	1
CO2	2	2	1	1								2	3	2
CO3	1	3	1			1	1			1		1	2	3
CO4	2	2	3	2		1							1	3
CO5	2	1	3	1								2	1	2
	9	10	8	5		2	1			1		6	9	11

Mapping of CO's with PO's:

Seme	ster											
Subje	ect Nam	ie	PRES	FRESSED AN	D PRE	FABR	ICATI	ED STRUCT	URES	5		
Subje	ct Cod	e	PCEE	26								
Prere	quisite		DESIC	GN OF CONC	RETE	STRU	CTURE	ES				
L	Т	Р	Η		С	Р	Α		L	Т	Р	Н
3	0	0	3		2	0.5	0.5		3	0	0	3

Course Objectives

- To introduce the concept of prestressing, methods and advantages.
- Todesign the prestressed concrete structures subjected to flexure, shear, tension and compression.
- To acquire knowledge about the concept of circular prestressing and its application.

Course Outcome:

Course	outcome.	Domain
		C or P or A
CO1	Understand the need of the prestressed concrete and the methods of prestressing.	С
CO2	Identify and apply the design codes relevant for the designof prestressed concrete members	C & P
CO3	Accomplish the design calculation to predict circular prestressing behaviour of prestressed concrete structures.	А
CO4	Understand the behaviour of composite section and analyse the stress under different conditions.	С
CO5	Analyse the behaviour of statically indeterminate structures for the primary and secondary moments.	С

COURSE CONTENT

UNIT I INTRODUCTION – THEORY AND BEHAVIOUR

Basic concepts – Advantages – Materials required – Systems and methods of prestressing –Analysis of sections by Stress concept, Strength concept and Load balancing concept - Effect of tendon profile on deflections – Factors influencing deflections – Calculation of short term and long term deflections –Losses of prestress.

UNIT II DESIGN OF MEMBERS.

Behaviour of flexural members, determination of ultimate flexural strength – Various Codal provisions - Design for shear, bond and torsion, Design of Tension member, Design of Compression member. Stress distribution in end block-Design of anchorage zone reinforcement.

UNIT III CIRCULAR PRESTRESSING

Prestressed Concrete Pipes- Advantages, Loads - Design of cylinder and non-cylinder pipes. Prestressed Concrete Tanks-Choice of types of tanks.

UNIT IV COMPOSITE CONSTRUCTION

Types of composite Construction - Analysis of stresses – Differential Shrinkage - Estimation of Deflection. Partial prestressing - its advantages and applications.

UNIT V CONTINUOUS BEAMS

Analysis of continuous beams - Methods of achieving continuity - concept of linear transformations, concordant cable profile and cap cables.

L	Т	Р	Total
45			45

119

Domain

9

9

9

9

TEXT BOOKS

- 1. Krishna Raju. N, Prestressed Concrete, Tata McGraw Hill Publishing Co. Ltd, New Dehi, 2012
- 2. Pandit.G.S. and Gupta.S.P., "Prestressed Concrete", CBS Publishers and Distributers Pvt. Ltd, 2012.
- 3. Libby J.R., Modern Prestressed Concrete, 3e, CBS Publishers & Distributors, New Delhi, 2007

REFERENCES

- 1. Lin T.Y. and Ned.H.Burns, "Design of prestressed Concrete Structures", Third Edition, Wiley India Pvt. Ltd., New Delhi, 2013.
- 2. Ramaswamy G.S., Modern prestressed concrete design, Arnold Heinimen, New Delhi.
- 3. David A.Sheppard, William R. and Philips, Plant Cast precast and prestressed concrete A design guide, McGraw Hill, New Delhi,2012.

IS Codes

- 1. IS1343:2012, Code of Practice for Prestressed Concrete, Bureau of Indian Standards, New Delhi, 2012
- 2. IS 3370-3 (1967): Code of Practice Concrete structures for the storage of liquids, Part 3: Prestressed concrete structures, Bureau of Indian Standards, New Delhi, 2008
- 3. IS 3370-4 (1967): Code of practice for concrete structures for the storage of liquids, Part 4: Design tables, Bureau of Indian Standards, New Delhi, 2008

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO1	1	2	1		1	1	1	1		2	1	1	2	4
CO2	1		2	1	1	1	1	1		1		2	1	3
CO3	2	2	3	1	1	2		1	1				2	1
CO4	1		2	1		1	1			1	1	1	1	2
CO5	1	2	3	1		2		1		1		2	1	2
Total	6	6	11	4	3	7	3	4	1	5	2	6	7	12
Scaled Values	2	2	3	1	1	2	1	1	1	1	1	2	2	3

Mapping of course outcomes with program outcomes

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High

Seme	ester	:	:													
Cour	se Code	:	:	PC	CEE2	7										
Cour	se Name		:	CC)NTI	RACTS	MANA	GEMEN	T							
Prere	equisite	:	:		-											
	L T	Р	0	2			C	Р	A	1		L	Т	Р	Н]
	3 0	0	3	;			2	0	1			3	0	0	3	
Cour	se Objec	tives	1							J						1
•				the	vario	ous type	es of cons	truction	contrac	ts.						
•						• •										
•																
	To Know the various legal implications related to contracts.See Outcome: After the completion of the course, students will beDomainLevel															
Cours	se Outcor	me [.] A	fte	r th			•			ill he	Do	main			Lev	el
Cours able t		me: A	fter	r th			•			ill be	-	main P or 4	4		Lev	el
able t	to		-		e con	pletion	of the co	urse, sti	udents w	ill be	C or	P or A	A	Unde		
able 1 CO1	to Reco	gnize	the	e va	e con rious	types of	of the co	<i>urse, sti</i> ction co	<i>udents w</i> ntracts		C or Cogniti	P or A	4		erstan	ding
able t	to Reco	gnize	the	e va	e con rious	types of	of the co	<i>urse, sti</i> ction co	<i>udents w</i> ntracts		C or Cogniti Cogniti	P or A ive	4	Unde	erstan	ding
able i CO1 CO2	to Reco Unde	gnize rstan	the d th	e va ne te	e con rious ender	types of s, arbitr	of the co of constru ation and	<i>urse, sti</i> ction co legal re	<i>udents w</i> ntracts		C or Cogniti Cogniti Affecti	P or A ive ive ve	A	Unde Resp	erstan erstan oondii	ding ding ng
able 1 CO1 CO2 CO3	to Reco Unde Gain	gnize rstan know	the d th	e va ne te lge	<i>e con</i> rious ender abour	types of s, arbitr	of the co of constru ation and s tax laws	urse, sti ction co legal re	<i>udents w</i> ntracts quireme	ents	C or Cogniti Cogniti Affecti Cogniti	P or A ive ive ve ive	A	Unde Resp Unde	erstan erstan oondin erstan	ding ding ng ding
able i CO1 CO2	to Reco Unde Gain	gnize rstan know to ar	the d th /led naly	e va ne te lge	<i>e con</i> rious ender abour	types of s, arbitr	of the co of constru ation and	urse, sti ction co legal re	<i>udents w</i> ntracts quireme	ents	C or Cogniti Cogniti Affecti	Por A ive ive ve ive ive	A	Unde Resp Unde Unde	erstan erstan oondii	ding ding ng ding ding
able 1 CO1 CO2 CO3	to Reco Unde Gain Able docur	gnize rstan know to an ments	the d th /led naly	e va ne te lge vse,	e con rious ender abour evalu	types of s, arbitration arbitration of the second state and the second state and the second state arbitrate arbitrat	of the co of constru ation and s tax laws	urse, sti ction co legal re	<i>udents w</i> ntracts quireme	ents	C or Cogniti Cogniti Affecti Cogniti	Por A ive ive ve ive ive ive ve	A	Unde Resp Unde Unde Resp	erstan erstan ondir erstan erstan	ding ding ng ding ding ng
able 1 CO1 CO2 CO3 CO4 CO5	to Reco Unde Gain Able docur	gnize rstand know to an ments know	the d th vlec naly vlec	e va ne te lge yse,	e con rious ender abour evalu	types of s, arbitration arbitration of the second state and the second state and the second state arbitrate arbitrat	of the co of constru ation and s tax laws d design	urse, sti ction co legal re	<i>udents w</i> ntracts quireme	ents	C or Cogniti Cogniti Affecti Cogniti Affecti	Por A ive ive ve ive ive ive ve	A	Unde Resp Unde Unde Resp	erstan ondin erstan erstan ondin	ding ding ng ding ding ng

UNIT I INTRODUCTION TO CONSTRUCTION CONTRACT

Definition of Contract Legal issues in contract – Standard forms of contracts- General and special conditions of contracts- Contract pricing by the client, project management consultants and the contractor, Contract correspondence and contract closure. Types of contracts, Documents forming a contract, General conditions of Indian contracts - International contracts - Contract administration.

UNIT II TENDERS

Prequalification – Bidding – Accepting – Evaluation of Tender from Technical, Contractual and Commercial Points of View – Contract Formation and Interpretation – Potential Contractual Problems - World Bank Procedures and Guidelines – Tamilnadu Transparency in Tenders Act.

UNIT III ARBITRATION

Comparison of Actions and Laws – Agreements – Appointment of Arbitrators – Conditions of Arbitration – Arbitration Tribunals - Powers and Duties of Arbitrator – Enforcement of Award – Arbitration and Conciliation Act 1996 - Arbitration case study.

UNIT IV TAX LAWS

Income Tax, Sales Tax, Excise and Custom Duties and their Influence on Construction Costs – Legal Requirements for Planning – Property Law – Agency Law – Local Government Laws for Approval – Statutory Regulations

UNIT V LABOUR REGULATION

Social Security – Welfare Legislation – Laws relating to Wages, Bonus and Industrial Disputes, Labour Administration – Insurance and Safety Regulations – Workmen's Compensation Act – Indian Factory Act – Tamilnadu Factory Act – Child Labour Act - Other Labour Laws

9

9

9

9

	L	Т	Р	Total	
	45	0	0	45	
OOKS					

- 1. Anurag K Agarwal, "Contracts and Arbitration for Managers", SAGE Response, 2015.
- 2. S. RanagaRao, "Contract Management & Dispute Resolutions", Engineering staff College of India, 2008.
- 3. C. J. Schexnayder and R. E. Mayo, "Construction Management Fundamentals", McGraw Hill, New Delhi. 2003.

REFERENCES

- 1. Prof AkhileshwarPathak, "Contract Terms Are Common Sense", Penguin Portfolio, 2018.
- 2. B. S. Patil "Civil Engineering Contracts and Estimates", Universities Press, 2009.
- 3. D.S. Berrie and B.c.Paulson, "Professional construction management including C.M.Design construct and general contracting" McGraw Hill International, 1992.

	PO1	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO1	PS02
CO 1											1		1	
CO 2			2			3		3	2	1	1		1	
CO 3	2	2							2	1	1			
CO 4	2	1		2		3						1		
CO 5					2		3			2				1
Total	4	3	2	2	2	6	3	3	4	4	3	1	2	1
Scaled Value	1	1	1	1	1	2	1	1	1	1	1	1	1	1

Mapping of CO with PO's

Note:	Total	0	1-5	6-10	11-15
	Scaled value	0	1	2	3
	Relation	No	Low	Medium	High

L

3

Course Code : PCEE28

:

Course Name : AIR AND NOISE POLLUTION AND CONTROL

Prerequisite : Environmental Engineering

Т	Р	С	С	Р	А	L	Т	Р	H
0	0	3	3	0	1	3	0	0	3

Course Objectives

- To learn the effects of air pollutants
- To gain the knowledge on various particulate control methods
- To understand the impact of gaseous pollutants and controlling methods
- To perceive knowledge on air sampling and pollutant measurement
- To identify the concepts of noise pollution and control methods

Course <i>able to</i>	Outcome: After the completion of the course, students will be	Domain C or P or A	Level
CO1	Understand the effects of air pollutants	Cognitive	Understand
CO2	Understand the particulate control methods	Cognitive	Understand
CO3	Understand the gaseous pollutants and controlling methods	Cognitive	Understand
CO4	Acquire knowledge on air sampling and pollutant measurement	Cognitive	Knowledge
CO5	<i>Recognise</i> the concepts of noise pollution and control methods	Cognitive	Knowledge

COURSE CONTENT

UNIT I AIR POLLUTANTS

Air pollutants, Sources, classification, Combustion Processes and pollutant emission, Effects on Health, vegetation, materials and atmosphere, Reactions of pollutants in the atmosphere and their effects-Smoke, smog and ozone disturbance, Greenhouse effect.

UNIT II PARTICULATE CONTROL

Air Pollution control- at source-equipments for control of air pollution-For particulate matter-Settling chambers-Fabric filters-Scrubbers-Cyclones Electrostatic precipitators

UNIT III GAS POLLUTANT CONTROL

Gaseous pollutants-control by absorption-adsorption scrubbers-secondary combustion after burners, Working principles advantages and disadvantages, design criteria and examples

UNIT IV AIR SAMPLING AND LEGISLATIONS

Air sampling and pollution measurement methods, principles and instruments, Ambient air quality and emission standards, Air pollution indices, Air Act, legislation and regulations, control principles

9

9

9

UNIT V INDOOR AIR QUALITY AND NOISE POLLUTION

Indoor air quality .Basics of acoustics and specification of sound; sound power, sound intensity and sound pressure levels; plane, point and line sources, multiple sources; outdoor and indoor noise propagation; psychoacoustics and noise criteria, effects of noise on health, annoyance rating schemes; special noise environments: Infrasound, ultrasound, impulsive sound and sonic boom; noise standards and limit values; noise instrumentation and monitoring procedure. Noise indices. Noise control methods.

45 0 0 45	L	Т	Р	Total
	45	0	0	45

TEXT BOOKS

- 1. Noel de Nevers, Air Pollution Control Engineering, McGraw Hill, New York, 2010.
- 2. Lawrence K. Wang, Norman C. Parelra, Yung Tse Hung, Air Pollution Control Engineering, Tokyo, 2004.
- 3. Anjaneyulu. Y, 'Air Pollution and Control Technologies', Allied Publishers (P) Ltd., India, 2002

REFERENCES

- 1. David H.F. Liu, Bela G. Liptak 'Air Pollution', Lewis Publishers, 2000.
- 2. Arthur C.Stern, 'Air Pollution (Vol.I Vol.VIII)', Academic Press, 2006.
- 3. Wayne T.Davis, 'Air Pollution Engineering Manual', John Wiley & Sons, Inc., 2000

E REFERENCES

Mapping of CO with PO's

								1		1	1		1	1
	P01	P02	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS01	PSO2
CO 1				3		2	3		3					
CO 2			2	3			3		3					2
CO 3	1		1	3			3		3	1			1	1
CO 4	1			3	2		3	2	3		1		1	1
CO 5				3			3	3	3		1			
Total	2		3	15	2	2	15	5	15	1	2		2	4
Scaled Value	1	0	1	3	1	1	3	1	3	1	1	0	1	1

Note:	

Total	0	1-5	6-10	11-15
Scaled value	0	1	2	3
Relation	No	Low	Medium	High